

The Jasmin Open source SMS gateway

Jasmin [http://jasminsms.com/] is an open-source SMS Gateway with many enterprise-class features, Jasmin is built to be easily customized to meet the specific needs of messaging exchange growing business.

Based on strong message routing algorithms, Jasmin provides flexibility to define rule based routing based on various criteria: sender ID, source, destination and many combinations. Auto reconnection and re-routing mechanism managing peak hours or link failover for high availability services.

Jasmin is written in Python and Twisted framework for serving highly scalable applications, SMS message delivery can be done through HTTP and SMPP protocols, intelligent routing can be configured in real-time through an API, cli interface or a web backend [1].

Features

	SMPP Client / Server

	HTTP Client / Server

	Based on AMQP broker for store&forward mechanisms

	Advanced message routing : Simple & static, Roundrobin, Failover, Leastcost ..

	Standard message filtering: TransparentFilter, ConnectorFilter, UserFilter ..

	Advanced message filtering: EvalPyFilter

	Advanced messaging/routing mechanisms enabled by message interceptor

	Flexible billing support

	Supports Unicode (UTF-8 / 16) for sending out multilingual SMS

	Supports easy creation and sending of specialized/binary SMS like mono Ringtones, WAP Push, Vcards

	Supports concatenated (multipart) SMS contents (long SMS)

Jasmin is designed for performance, high traffic loads and full in-memory execution.

Getting started

	
	Installation – Install and run Jasmin SMS Gateway

	Monitoring using Grafana – Install Grafana for monitoring

	Kubernetes cluster – Kubernetes cluster how-to

	Receiving SMS – Basic push/pull SMS application via HTTP

	
	RESTful API – RESTful API technical specification

	SMPP Server API – SMPP Server API technical specification

	Routing – Running basic SMS and routing scenarios

	User FAQ – Frequently asked questions

Full contents

	Architecture overview

	Support
	Getting Help

	Commercial Support

	Installation
	Prerequisites & Dependencies

	Ubuntu

	RHEL & CentOS

	Pypi

	Docker

	Monitoring using Grafana

	Kubernetes cluster

	Sending your first SMS

	RESTful API
	Installation

	Authentication

	Send a single message

	Send multiple messages

	Send binary messages

	Balance check

	Route check

	Ping

	HTTP API
	Features

	Sending SMS-MT

	Receiving DLR

	Receiving SMS-MO

	Monitoring metrics

	Checking account balance

	Checking rate price

	SMPP Server API
	Features

	The message router
	Process flow

	Router components

	Interception
	Enabling interceptor

	Intercepting a message

	Controlling response

	Scripting examples

	Programming examples
	Sending SMS

	Receiving SMS

	Routing

	Management CLI overview
	Architecture

	Configuration

	First connection & authentication

	Profiles and persistence

	Management CLI Modules
	User manager

	Group manager

	MO router manager

	MT router manager

	MO interceptor manager

	MT interceptor manager

	SMPP Client connector manager

	Filter manager

	HTTP Client connector manager

	Stats manager

	Billing
	Billing quotas

	Process flow

	Messaging flows
	SMPPClientManagerPB

	DLRLookup

	RouterPB

	SMPPClientSMListener

	deliverSmThrower

	DLRThrower

	User FAQ
	Could not find a version that satisfies the requirement jasmin

	Cannot connect to telnet console after starting Jasmin

	Should i expose my SMPP Server & HTTP API to the public internet for remote users ?

	Does Jasmin persist its configuration to disk ?

	When receiving a DLR: Got a DLR for an unknown message id

	How to hide message content in log files for privacy reasons ?

	Developer FAQ
	How to ‘log’ messages in a third party database ?

	How to directly access the Perspective Broker API ?

	Can you provide an example of how to use EvalPyFilter ?

	How to log events inside an EvalPyFilter ?

	How to set an EvalPyFilter for a MT Route ?

	PDU params keep resetting to connector defaults even after interception ?

Links

	Jasmin SMS Gateway home page [http://www.jasminsms.com]

	Documentation [http://docs.jasminsms.com]

	Source code [http://github.com/jookies/jasmin]

	Travis CI [https://travis-ci.org/jookies/jasmin]

License

Jasmin is released under the terms of the [Apache License Version 2]. See `LICENSE` file for details.

Footnotes

[1]
Web backend is provided under a commercial license, c.f. Support

Architecture overview

Jasmin [http://jasminsms.com/] is composed of several components with scoped responsibilities:

[image: HLD Architecture]

Jasmin SMS Gateway high level design

	jCli: Telnet management console, refer to Management CLI overview for more details,

	SMPP Client Manager PB: A PerspectBroker [http://twisted.readthedocs.org/en/latest/core/howto/pb-intro.html]
providing facilities to manage (add, remove, list, start, stop …) SMPP client connectors,

	Router: A PerspectBroker [http://twisted.readthedocs.org/en/latest/core/howto/pb-intro.html]
providing facilities to manage message routes, groups, users, http connectors and filters,

	DLR Thrower: A service for delivering acknowledgement receipts back to third party applications
through HTTP, refer to HTTP API for more details,

	DeliverSM Thrower: A service for delivering MO SMS (Mobile originated) to third party applications
through HTTP, refer to HTTP API for more details,

	Restful API: A Restful API to be used by third party application to send MT SMS (Mobile Terminated) and launch batches,
refer to RESTful API for more details.

	HTTP API: A HTTP Server to be used by third party application to send MT SMS (Mobile Terminated),
refer to HTTP API for more details.

	SMPP Server API: A SMPP Server to be used by third party application to send and receive SMS through
a stateful tcp protocol, refer to SMPP Server API for more details.

Jasmin core and its external connectors (used for AMQP, Redis, SMPP, HTTP, Telnet …) are written in Python
and are mainly based on Twisted matrix [https://twistedmatrix.com/], a event-driven networking engine.

Support

Getting Help

The easiest way to get help with the project is to open an issue on Github [http://github.com/jookies/jasmin/issues].

The forum [https://groups.google.com/forum/#!forum/jasmin-sms-gateway] is also available for support.

Commercial Support

We offer commercial support for Jasmin [http://www.jasminsms.com], commercial solution hosting, as well as remote and on-site consulting and engineering.

You can contact us at support@jasminsms.com or raise a demand through our Helpdesk [https://jasminsms.atlassian.net/servicedesk/customer/portal/1] to learn more.

Installation

The Installation section is intended to get you up and running quickly with a simple SMS sending scenario through HTTP API or SMPP Server API.

Jasmin installation is provided as rpm & deb Linux packages, docker image and pypi package.

Important

Jasmin needs a working RabbitMQ and Redis servers, more info in Prerequisites & Dependencies below.

Prerequisites & Dependencies

Jasmin [http://jasminsms.com/] requires Python 3 (Python 2 is no more supported) with a functioning pip module [https://pypi.python.org/pypi/pip].

Hint

Latest pip module installation: # curl https://bootstrap.pypa.io/get-pip.py | python

Depending on the Linux distribution you are using, you may need to install the following dependencies:

	RabbitMQ Server [https://www.rabbitmq.com], Ubuntu package name: rabbitmq-server. RabbitMQ is used heavily by Jasmin as its core AMQP.

	Redis Server [http://redis.io/], Ubuntu package name: redis-server. Redis is used mainly for mapping message ID’s when receiving delivery receipts.

	header files and a static library for Python, Ubuntu package name: python-dev

	Foreign Function Interface library (development files), Ubuntu package name: libffi-dev

	Secure Sockets Layer toolkit - development files, Ubuntu package name: libssl-dev

	Twisted Matrix [https://twistedmatrix.com], Python Event-driven networking engine, Ubuntu package name: python-twisted

Ubuntu

Jasmin [http://jasminsms.com/] can be installed through DEB packages hosted on Packagecloud [https://packagecloud.io/jookies/jasmin-sms-gateway]:

curl -s https://setup.jasminsms.com/deb | sudo bash
sudo apt-get install jasmin-sms-gateway

Note

Ubuntu 20.04 and newer versions are supported.

You have to install and setup RabbitMQ or Redis servers on same machine (Default configuration) or on separate ones (Requires Jasmin configuration: /etc/jasmin/jasmin.cfg).

Note

redis and rabbitmq must be installed and already running.

Once Jasmin installed, you may simply start the jasmind service:

sudo systemctl enable jasmind
sudo systemctl start jasmind

Note

redis and rabbitmq must be installed and already running.

RHEL & CentOS

Jasmin [http://jasminsms.com/] can be installed through RPM packages hosted on Packagecloud [https://packagecloud.io/jookies/jasmin-sms-gateway]:

curl -s https://setup.jasminsms.com/rpm | sudo bash
sudo yum install epel-release
sudo yum install jasmin-sms-gateway

Note

Many dependencies are installed from the Epel repository, please pay attention to activating this repository before installing jasmin-sms-gateway package.

Note

Red Hat Enterprise Linux 8 & CentOS 8 and newer versions are supported.

You have to install and setup RabbitMQ or Redis servers on same machine (Default configuration) or on separate ones (Requires Jasmin configuration: /etc/jasmin/jasmin.cfg).

Note

redis and rabbitmq must be installed and already running.

Once Jasmin installed, you may simply start the jasmind service:

sudo systemctl enable jasmind
sudo systemctl start jasmind

Pypi

Having another OS not covered by package installations described above ? using the Python package installer will be possible, you may have to follow these instructions:

System user

Jasmin system service is running under the jasmin system user, you will have to create this user under jasmin group:

sudo useradd jasmin

System folders

In order to run as a POSIX system service, Jasmin requires the creation of the following folders before installation:

/etc/jasmin
/etc/jasmin/resource
/etc/jasmin/store #> Must be owned by jasmin user
/var/log/jasmin #> Must be owned by jasmin user

Installation

The last step is to install jasmin through pip [https://pypi.python.org/pypi/pip]:

sudo pip install jasmin

systemd scripts must be downloaded from here <https://github.com/jookies/jasmin/tree/master/misc/config/systemd> and
manually installed into your system, once placed in /lib/systemd/system jasmind shall be enabled and started:

sudo systemctl enable jasmind
sudo systemctl start jasmind

Note

redis and rabbitmq must be started with jasmin.

Docker

Containers are ideal for microservice architectures [https://en.wikipedia.org/wiki/Microservices]
and for environments that scale rapidly or release often, Here’s more from Docker’s website [https://www.docker.com/what-docker].

Installing Docker

Before we get into containers, we’ll need to get Docker running locally. You can do this by installing the
package for your system (tip: you can find yours here [https://docs.docker.com/installation/#installation]).

Once that’s set up, you’re ready to start using Jasmin container !

Using docker-compose

Create a file named “docker-compose.yml” and paste the following:

version: "3.10"

services:
 redis:
 image: redis:alpine
 restart: unless-stopped
 healthcheck:
 test: redis-cli ping | grep PONG
 deploy:
 resources:
 limits:
 cpus: '0.2'
 memory: 128M
 security_opt:
 - no-new-privileges:true

 rabbit-mq:
 image: rabbitmq:3.10-management-alpine
 restart: unless-stopped
 healthcheck:
 test: rabbitmq-diagnostics -q ping
 deploy:
 resources:
 limits:
 cpus: '0.5'
 memory: 525M
 security_opt:
 - no-new-privileges:true

 jasmin:
 image: jookies/jasmin:latest
 restart: unless-stopped
 ports:
 - 2775:2775
 - 8990:8990
 - 1401:1401
 depends_on:
 redis:
 condition: service_healthy
 rabbit-mq:
 condition: service_healthy
 environment:
 REDIS_CLIENT_HOST: redis
 AMQP_BROKER_HOST: rabbit-mq
 deploy:
 resources:
 limits:
 cpus: '1'
 memory: 256M
 security_opt:
 - no-new-privileges:true

Then spin it:

docker-compose up -d

This command will pull latest jasmin v0.10, latest redis and latest rabbitmq images to your computer:

docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
jasmin latest 0e4cf8879899 36 minutes ago 478.6 MB

Jasmin is now up and running:

docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
1a9016d298bf jookies/jasmin:0.10 "/docker-entrypoint.…" 3 seconds ago Up 2 seconds 0.0.0.0:1401->1401/tcp, 0.0.0.0:2775->2775/tcp, 0.0.0.0:8990->8990/tcp jasmin
af450de4fb95 rabbitmq:alpine "docker-entrypoint.s…" 5 seconds ago Up 3 seconds 4369/tcp, 5671-5672/tcp, 15691-15692/tcp, 25672/tcp rabbitmq
c8feb6c07d94 redis:alpine "docker-entrypoint.s…" 5 seconds ago Up 3 seconds 6379/tcp redis

Note

You can play around with the docker-compose.yml to choose different versions, mounting the configs outside the container, etc …

Monitoring using Grafana

Through its native exporter for Prometheus [https://prometheus.io/] you can collect and analyze detailed metrics within a production environment, we will be using the /metrics API (Monitoring metrics) with Prometheus [https://prometheus.io/] and Grafana [https://grafana.com/] in this guide.

Prepare Prometheus’s settings:

global:
 scrape_interval: 30s
 scrape_timeout: 10s

scrape_configs:
 - job_name: jasmin
 static_configs:
 - targets:
 - 'jasmin:1401'
 - job_name: rabbitmq
 static_configs:
 - targets:
 - 'rabbit-mq:15692'

The use the following docker-compose including prometheus and grafana:

version: "3.10"

services:
 redis:
 image: redis:alpine
 restart: unless-stopped
 healthcheck:
 test: redis-cli ping | grep PONG
 deploy:
 resources:
 limits:
 cpus: '0.2'
 memory: 128M
 security_opt:
 - no-new-privileges:true

 rabbit-mq:
 image: rabbitmq:3.10-management-alpine
 restart: unless-stopped
 healthcheck:
 test: rabbitmq-diagnostics -q ping
 deploy:
 resources:
 limits:
 cpus: '0.5'
 memory: 525M
 security_opt:
 - no-new-privileges:true

 prometheus:
 image: prom/prometheus:latest
 restart: unless-stopped
 ports:
 - '9090:9090'
 volumes:
 - prometheus.yml:/etc/prometheus/prometheus.yml
 - monitoring_data:/prometheus
 command:
 - '--config.file=/etc/prometheus/prometheus.yml'
 - '--storage.tsdb.path=/prometheus'
 - '--web.console.libraries=/etc/prometheus/console_libraries'
 - '--web.console.templates=/etc/prometheus/consoles'
 - '--web.enable-lifecycle'
 depends_on:
 - jasmin
 deploy:
 resources:
 limits:
 cpus: '0.2'
 memory: 128M
 security_opt:
 - no-new-privileges:true

 grafana:
 image: grafana/grafana
 restart: unless-stopped
 ports:
 - 3000:3000
 environment:
 GF_INSTALL_PLUGINS: "grafana-clock-panel,grafana-simple-json-datasource"
 volumes:
 # These mount points should be copied from https://github.com/jookies/jasmin/tree/master/docker/grafana
 - ./provisioning/datasources:/etc/grafana/provisioning/datasources:ro
 - ./provisioning/dashboards:/etc/grafana/provisioning/dashboards:ro
 - ./dashboards:/opt/grafana-dashboards:ro

 - monitoring_data:/var/lib/grafana
 depends_on:
 - prometheus
 deploy:
 resources:
 limits:
 cpus: '0.5'
 memory: 256M
 security_opt:
 - no-new-privileges:true

 jasmin:
 image: jookies/jasmin:latest
 restart: unless-stopped
 ports:
 - 2775:2775
 - 8990:8990
 - 1401:1401
 depends_on:
 redis:
 condition: service_healthy
 rabbit-mq:
 condition: service_healthy
 environment:
 REDIS_CLIENT_HOST: redis
 AMQP_BROKER_HOST: rabbit-mq
 deploy:
 resources:
 limits:
 cpus: '1'
 memory: 256M
 security_opt:
 - no-new-privileges:true

volumes:
 monitoring_data: { }

Spin it:

docker-compose -f docker-compose.grafana.yml up -d

You should have the following containers up and running:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
cd7597137e9a grafana/grafana "/run.sh" 2 days ago Up About a minute 0.0.0.0:3000->3000/tcp jasmin-grafana-1
bd3be30a5cd5 prom/prometheus:latest "/bin/prometheus --c…" 2 days ago Up About a minute 9090/tcp jasmin-prometheus-1
8209435c2f8d jasmin-jasmin "/docker-entrypoint.…" 2 days ago Up About a minute 0.0.0.0:1401->1401/tcp, 0.0.0.0:2775->2775/tcp, 0.0.0.0:8990->8990/tcp jasmin
6c88fa5e47db rabbitmq:alpine "docker-entrypoint.s…" 2 days ago Up About a minute 4369/tcp, 5671-5672/tcp, 15691-15692/tcp, 25672/tcp jasmin-rabbit-mq-1
a649abd164c8 redis:alpine "docker-entrypoint.s…" 2 days ago Up About a minute 6379/tcp jasmin-redis-1

Now open Grafana using default username (admin) and password (admin):

http://127.0.0.1:3000

Then go to Dashboards where you’ll find 2 folders having a bunch of pre-made dashboards:

	Jasmin > HTTP API: HTTP Api monitoring,

	Jasmin > SMPP Clients: Per SMPP Client (cid) monitoring with rabbitmq queues,

	Jasmin > SMPP Server: SMPP Server monitoring,

	RabbitMQ > RabbitMQ-Overview: Standard RabbitMQ monitoring,

Now you can start playing around with the collected metrics, go to Explore and play with the autocomplete feature in Metrics browser by typing httapi, smpps or smppc.

You can also explore metrics of a defined SMPP client connector by setting the cid tag, example of getting number of bound session of a specific connector:

smppc_bound_count{cid="foo"}

Note

The complete set of metrics exposed by Jasmin can be checked through the /metrics http api, these metrics are also exposed through jcli’s Stats manager module.

Kubernetes cluster

This part of the documentation covers clustering Jasmin SMS Gateway using Kubernetes [https://kubernetes.io/], it is also made as a reference setup for anyone looking to deploy Jasmin in cloud architectures, this is a proof-of-concept model for deploying simple clusters, these were used for making stress tests and performance metering of the sms gateway.

Before you begin you need to have a Kubernetes cluster, and the kubectl command-line tool must be configured to communicate with your cluster. It is recommended to run this tutorial on a cluster with at least two nodes that are not acting as control plane hosts. If you do not already have a cluster, you can create one by using minikube or you can use one of these Kubernetes playgrounds:

	Okteto [https://www.okteto.com/]

	Killercoda [https://killercoda.com/playgrounds/scenario/kubernetes]

	Play with Kubernetes [https://labs.play-with-k8s.com/]

Your Kubernetes server must be at or later than version v1.10. To check the version, enter kubectl version.

Simple k8s architecture

This is barely simple architecture with running pods and a SMPP simulator to allow simple functional or performance testing.

Note

This section of the guide uses the provided Kubernetes objects located in this directory [https://github.com/jookies/jasmin/blob/master/kubernetes/simple-pods], please note that you may need to prepare volumes and metallb ip address pools to make these manifests run on your bare-metal K8s cluster.

Note

Please note this set of K8s manifests are prepared for a bare-metal cluster and you may need to adjust it for cloud/managed clusters where volumes, networking and services are handled with a slight difference.

Start by adjusting the namespace in configmaps.yml: replace the rabbitmq and redis hosts to hostnames provided by your own Kubernetes cluster then deploy:

	kubectl apply -f redis.yml

	kubectl apply -f rabbitmq.yml

	kubectl apply -f jasmin.yml

You should have the cluster up and running within seconds, your Jasmin pod must log to stdout the following messages:

INFO 1 Starting Jasmin Daemon ...
INFO 1 Interceptor client Started.
INFO 1 RedisClient Started.
INFO 1 AMQP Broker Started.
INFO 1 RouterPB Started.
INFO 1 SMPPClientManagerPB Started.
INFO 1 DLRLookup Started.
INFO 1 SMPPServer Started.
INFO 1 deliverSmThrower Started.
INFO 1 DLRThrower Started.
INFO 1 HTTPApi Started.
INFO 1 jCli Started.

Warning

If you don’t have the indicated above logged lines to Jasmin’s pod stdout then you are having troubles somewhere, do not step forward before solving them.

Now you can connect jcli by first running a port-forward and then connecting to the forwarded port:

kubectl port-forward jasmin 8990:8990

Then:

telnet 127.0.0.1 8990

Note

The kubectl port-forward command will not return unless you ctrl-c to stop the port-forward, the second command (telnet) needs to be run in another terminal session.

You can now make the same steps to port-forward the smpp (2775) port or the http (1401) port and start using Jasmin.

If you need to connect Jasmin to a provided smpp simulator then first deploy the simulator:

kubectl apply -f smppsimulator.yml

And then add a new SMPP client connector by following these steps:

smppccm -a
> cid smpp_simulator
> host smpp-simulator
> username smppclient1
> password password
> ok
smppccm -1 smpp_simulator

You will also need to create a group, user and at least a mt route to make your first sms delivery test, this guide is your friend ! [https://docs.jasminsms.com/en/latest/installation/index.html#sending-your-first-sms]

Note

You may adjust the host value in the example above to your own host (provided by your Kubernetes cluster).

Sending your first SMS

For the really impatient, if you want to give Jasmin a whirl right now and send your first SMS, you’ll have to connect to Management CLI overview and setup a connection to your SMS-C, let’s assume you have the following SMPP connection parameters as provided from your partner:

Basic SMPP connection parameters

	Paramater

	Description

	Value

	Host

	Host of remote SMS-C

	172.16.10.67

	Port

	SMPP port on remote SMS-C

	2775

	Username

	Authentication username

	smppclient1

	Password

	Authentication password

	password

	Throughput

	Maximum sent SMS/second

	110

Note

In the next sections we’ll be heavily using jCli console, if you feel lost, please refer to Management CLI overview for detailed information.

1. Adding SMPP connection

Connect to jCli console through telnet (telnet 127.0.0.1 8990) using jcliadmin/jclipwd default authentication parameters and add a new connector with an CID=DEMO_CONNECTOR:

Authentication required.

Username: jcliadmin
Password:
Welcome to Jasmin console
Type help or ? to list commands.

Session ref: 2
jcli : smppccm -a
> cid DEMO_CONNECTOR
> host 172.16.10.67
> port 2775
> username smppclient1
> password password
> submit_throughput 110
> ok
Successfully added connector [DEMO_CONNECTOR]

2. Starting the connector

Let’s start the newly added connector:

jcli : smppccm -1 DEMO_CONNECTOR
Successfully started connector id:DEMO_CONNECTOR

You can check if the connector is bound to your provider by checking its log file (default to /var/log/jasmin/default-DEMO_CONNECTOR.log) or through jCli console:

jcli : smppccm --list
#Connector id Service Session Starts Stops
#DEMO_CONNECTOR started BOUND_TRX 1 0
Total connectors: 1

3. Configure simple route

We’ll configure a default route to send all SMS through our newly created DEMO_CONNECTOR:

jcli : mtrouter -a
Adding a new MT Route: (ok: save, ko: exit)
> type defaultroute
jasmin.routing.Routes.DefaultRoute arguments:
connector
> connector smppc(DEMO_CONNECTOR)
> rate 0.00
> ok
Successfully added MTRoute [DefaultRoute] with order:0

4. Create a user

In order to use Jasmin’s HTTP API to send SMS messages, you have to get a valid user account, that’s what we’re going to do below.

First we have to create a group to put the new user in:

jcli : group -a
 Adding a new Group: (ok: save, ko: exit)
 > gid foogroup
 > ok
 Successfully added Group [foogroup]

And then create the new user:

jcli : user -a
Adding a new User: (ok: save, ko: exit)
> username foo
> password bar
> gid foogroup
> uid foo
> ok
Successfully added User [foo] to Group [foogroup]

5. Send SMS

Sending outbound SMS (MT) is simply done through Jasmin’s HTTP API (refer to HTTP API for detailed information about sending and receiving SMS and receipts):

http://127.0.0.1:1401/send?username=foo&password=bar&to=06222172&content=hello

Calling the above url from any brower will send an SMS to 06222172 with hello content, if you receive a response like the below example it means your SMS is accepted for delivery:

Success "9ab2867c-96ce-4405-b890-8d35d52c8e01"

For more troubleshooting about message delivery, you can check details in related log files in /var/log/jasmin:

Messaging related log files

	Log filename

	Description

	messages.log

	Information about queued, rejected, received and sent messages

	default-DEMO_CONNECTOR.log

	The SMPP connector log file

RESTful API

The RESTful API allows developers to expand and build their apps on Jasmin. The API makes it easy to send messages to one or many destinations, check balance and routing, as well as enabling bulk messaging.

This API is built on the Falcon web framework [http://falcon.readthedocs.io/en/stable/] and relying on a standard WSGI architecture, this makes it simple and scalable.

If you need to use a stateful tcp protocol (SMPP v3.4), please refer to SMPP Server API.

SMS Messages can be transmitted using the RESTful api, the following requirements must be met to enable the service:

	You need a Jasmin user account

	You need sufficient credit on your Jasmin user account

Installation

The RESTful API’s made available starting from v0.9rc16, it can be launched as a system service, so simply start it by typing:

sudo systemctl start jasmin-restapi

Note

The RESTful API works on Ubuntu16.04 and CentOS/RHEL 7.x out of the box, some requirements may be installed manually if you are using older Ubuntu distributions.

If you are not using rpm/deb packages to install Jasmin then that systemd service may not be installed on your system, you still can launch the RESTful API manually:

celery -A jasmin.protocols.rest.tasks worker -l INFO -c 4 --autoscale=10,3
twistd -n --pidfile=/tmp/twistd-web-restapi.pid web --wsgi=jasmin.protocols.rest.api

Configuration file for Celery and the Web server can be found in /etc/jasmin/rest-api.py.conf.

Note

You may also use any other WSGI server for better performance, eg: gunicorn with parallel workers …

Services

The Services resource represents all web services currently available via Jasmin’s RESTful API.

RESTful services

	Method

	Service

	Description / Notes

	POST

	/secure/send

	Send a single message to one destination address.

	POST

	/secure/sendbatch

	Send multiple messages to one or more destination addresses.

	GET

	/secure/balance

	Get user account’s balance and quota.

	GET

	/secure/rate

	Check a route and it’s rate.

	GET

	/ping

	A simple check to ensure this is a Jasmin API.

Authentication

Services having the /secure/ path (such as Send a single message and Route check) require authentication using Basic Auth [https://en.wikipedia.org/wiki/Basic_access_authentication] which transmits Jasmin account credentials as username/password pairs, encoded using base64.

Example:

curl -X GET -H 'Authorization: Basic Zm9vOmJhcg==' http://127.0.0.1:8080/secure/balance

We have passed the base64 encoded credentials through the Authorization header, ‘Zm9vOmJhcg==’ is the encoded username:password pair (’foo:bar’), you can use any tool [https://www.base64encode.org/] to base64 encode/decode.

If wrong or no authentication credentials are provided, a 401 Unauthorized error will be returned.

Send a single message

Send a single message to one destination address.

Definition:

http://<jasmin host>:<rest api port>/secure/send

Parameters are the same as the old http api.

Examples:

curl -X POST -H 'Authorization: Basic Zm9vOmJhcg==' -d '{
 "to": 19012233451,
 "from": "Jookies",
 "content": "Hello",
 "dlr": "yes",
 "dlr-url": "http://192.168.202.54/dlr_receiver.php",
 "dlr-level": 3
}' http://127.0.0.1:8080/secure/send

Note

Do not include username and password in the parameters, they are already provided through the Authorization header.

Result Format:

{"data": "Success \"c723d42a-c3ee-452c-940b-3d8e8b944868"}

If successful, response header HTTP status code will be 200 OK and and the message will be sent, the message id will be returned in data.

Send multiple messages

Send multiple messages to one or more destination addresses.

Definition:

http://<jasmin host>:<rest api port>/secure/sendbatch

Example of sending same message to multiple destinations:

curl -X POST -H 'Authorization: Basic Zm9vOmJhcg==' -d '{
 "messages": [
 {
 "to": [
 "33333331",
 "33333332",
 "33333333"
],
 "content": "Same content goes to 3 numbers"
 }
]
}' http://127.0.0.1:8080/secure/sendbatch

Result Format:

{"data": {"batchId": "af268b6b-1ace-4413-b9d2-529f4942fd9e", "messageCount": 3}}

If successful, response header HTTP status code will be 200 OK and and the messages will be sent, the batch id and total message count will be returned in data.

POST /secure/sendbatch json parameters

	Parameter

	Example(s)

	Presence

	Description / Notes

	messages

	[{“to”: 1, “content”: “hi”}, {“to”: 2, “content”: “hello”}]

	Mandatory

	A Json list of messages, every message contains
the /secure/send parameters

	globals

	{“from”: “Jookies”}

	Optional

	May contain any global message parameter, c.f. examples

	batch_config

	{“callback_url”: “http://127.0.0.1:7877”, “schedule_at”: “2017-11-15 09:00:00”}

	Optional

	May contain the following parameters: callback_url or/and errback_url (used for batch tracking in real time c.f. examples), schedule_at (used for scheduling sendouts c.f. examples).

Note

The Rest API server has an advanced QoS control to throttle pushing messages back to Jasmin, you may fine-tune it through the http_throughput_per_worker and smart_qos parameters.

Send binary messages

Sending binary messages can be done using single or batch
messaging APIs.

It’s made possible by replacing the content parameter by the hex_content, the latter shall contain your binary
data hex value.

Example of sending a message with coding=8:

curl -X POST -H 'Authorization: Basic Zm9vOmJhcg==' -d '{
 "to": 19012233451,
 "from": "Jookies",
 "coding": 8,
 "hex_content": "0623063106460628"
}' http://127.0.0.1:8080/secure/send

The hex_content used in the above example is the UTF16BE encoding of arabic word “أرنب” (’x06x23x06x31x06x46x06x28’).

Same goes for sending batches with binary data:

curl -X POST -H 'Authorization: Basic Zm9vOmJhcg==' -d '{
 "messages": [
 {
 "to": [
 "33333331",
 "33333332",
 "33333333"
],
 "hex_content": "0623063106460628"
 }
]
}' http://127.0.0.1:8080/secure/sendbatch

Usage examples:

The ref:parameter <restapi-POST_sendbatch_params> listed above can be used in many ways to setup a sendout batch, we’re going to list some use cases to show the flexibility of these parameters:

Example 1, send different messages to different numbers::

{
 "messages": [
 {
 "from": "Brand1",
 "to": [
 "55555551",
 "55555552",
 "55555553"
],
 "content": "Message 1 goes to 3 numbers"
 },
 {
 "from": "Brand2",
 "to": [
 "33333331",
 "33333332",
 "33333333"
],
 "content": "Message 2 goes to 3 numbers"
 },
 {
 "from": "Brand2",
 "to": "7777771",
 "content": "Message 3 goes to 1 number"
 }
]
}

Example 2, using global vars:

From the previous Example (#1) we used the same “from” address for two different messages (“from”: “Brand2”), in the below example
we’re going to make the “from” a global variable, and we are asking for level3 dlr for all sendouts:

{
 "globals" : {
 "from": "Brand2",
 "dlr-level": 3,
 "dlr": "yes",
 "dlr-url": "http://some.fancy/url"
 }
 "messages": [
 {
 "from": "Brand1",
 "to": [
 "55555551",
 "55555552",
 "55555553"
],
 "content": "Message 1 goes to 3 numbers"
 },
 {
 "to": [
 "33333331",
 "33333332",
 "33333333"
],
 "content": "Message 2 goes to 3 numbers"
 },
 {
 "to": "7777771",
 "content": "Message 3 goes to 1 number"
 }
]
}

So, globals are vars to be inherited in messages, we still can force a local value in some messages like the “from”: “Brand1” in the above example.

Example 3, using callbacks:

As explained, Jasmin is enqueuing a sendout batch everytime you call /secure/sendbatch,
the batch job will run and call Jasmin’s http api to deliver the messages, since this is running in background you can ask
for success or/and error callbacks to follow the batch progress.

{
 "batch_config": {
 "callback_url": "http://127.0.0.1:7877/successful_batch",
 "errback_url": "http://127.0.0.1:7877/errored_batch"
 },
 "messages": [
 {
 "to": [
 "55555551",
 "55555552",
 "55555553"
],
 "content": "Hello world !"
 },
 {
 "to": "7777771",
 "content": "Holà !"
 }
]
}

About callbacks:

The RESTful api is a wrapper around Jasmin’s http api, it relies on Celery task queue [http://www.celeryproject.org/]
to process long running batches.

When you launch a batch, the api will enqueue the sendouts through Celery and return a batchId, that’s the Celery task id.

Since the batch will be executed in background, the API provides a convenient way to follow its progression through two different
callbacks passed inside the batch parameters:

{
 "batch_config": {
 "callback_url": "http://127.0.0.1:7877/successful_batch",
 "errback_url": "http://127.0.0.1:7877/errored_batch"
 },
 "messages": [
 {
 "to": "7777771",
 "content": "Holà !"
 }
]
}

The callback_url will be called (GET) everytime a message is successfuly sent, otherwise the errback_url is called.

In both callbacks the following parameters are passed:

Batch callbacks parameters

	Parameter

	Example(s)

	Description / Notes

	batchId

	50a4581a-6e46-48a4-b617-bbefe7faa3dc

	The batch id

	to

	1234567890

	The to parameter identifying the destination number

	status

	1

	1 or 0, indicates the status of a message sendout

	statusText

	Success “07033084-5cfd-4812-90a4-e4d24ffb6e3d”

	Extra text for the status

About batch scheduling:

It is possible to schedule the launch of a batch, the api will enqueue the sendouts through Celery and return a batchId while
deferring message deliveries to the scheduled date & time.

{
 "batch_config": {
 "schedule_at": "2017-11-15 09:00:00"
 },
 "messages": [
 {
 "to": "7777771",
 "content": "Good morning !"
 }
]
}

The above batch will be scheduled for the 15th of November 2017 at 9am, the Rest API will consider it’s local server time to make the delivery, so please make sure it’s accurate to whatever timezone you’re in.

It’s possible to use another schedule_at format:

{
 "batch_config": {
 "schedule_at": "86400s"
 },
 "messages": [
 {
 "to": "7777771",
 "content": "Good morning !"
 }
]
}

The above batch will be scheduled for delivery in 1 day from now (86400 seconds = 1 day).

Balance check

Get user account’s balance and quota.

Definition:

http://<jasmin host>:<rest api port>/secure/balance

Parameters are the same as the old http api.

Examples:

curl -X GET -H 'Authorization: Basic Zm9vOmJhcg==' http://127.0.0.1:8080/secure/balance

Note

Do not include username and password in the parameters, they are already provided through the Authorization header.

Result Format:

{"data": {"balance": "10.23", "sms_count": "ND"}}

If successful, response header HTTP status code will be 200 OK, the balance and the sms count will be returned in data.

Route check

Check a route and it’s rate.

Definition:

http://<jasmin host>:<rest api port>/secure/rate

Parameters are the same as the old http api.

Examples:

curl -X GET -H 'Authorization: Basic Zm9vOmJhcg==' http://127.0.0.1:8080/secure/rate?to=19012233451

Note

Do not include username and password in the parameters, they are already provided through the Authorization header.

Result Format:

{"data": {"submit_sm_count": 1, "unit_rate": 0.02}}

If successful, response header HTTP status code will be 200 OK, the message rate and “pdu count” will be returned in data.

Ping

A simple check to ensure this is a responsive Jasmin API, it is used by third party apps like Web campaigners, cluster service checks, etc ..

Definition:

http://<jasmin host>:<rest api port>/ping

Examples:

curl -X GET http://127.0.0.1:8080/ping

Result Format:

{"data": "Jasmin/PONG"}

If successful, response header HTTP status code will be 200 OK and a static “Jasmin/PONG” value in data.

HTTP API

This document is targeted at software designers/programmers wishing to integrate SMS messaging as a function into their applications using HTTP protocol, e.g. in connection with WEB-server, unified messaging, information services etc..

If you need to use a stateful tcp protocol (SMPP v3.4), please refer to SMPP Server API.

SMS Messages can be transmitted using HTTP protocol, the following requirements must be met to enable the service:

	You need a Jasmin user account

	You need sufficient credit on your Jasmin user account [1]

Note

The ABCs:

	MT is referred to Mobile Terminated, a SMS-MT is an SMS sent to mobile

	MO is referred to Mobile Originated, a SMS-MO is an SMS sent from mobile

Features

The Http API allows you to:

	Send and receive SMS through Jasmin’s connectors,

	Receive http callbacks for delivery notification (receipts) when SMS-MT is received (or not) on mobile station,

	Send and receive long (more than 160 characters) SMS, unicode/binary content and receive http callbacks when a mobile station send you a SMS-MO.

	Get monitoring metrics

	Check your balance status,

	Check a message rate price before sending it.

Sending SMS-MT

In order to deliver SMS-MT messages, Data is transferred using HTTP GET/POST requests.
The Jasmin gateway accepts requests at the following URL:

http://127.0.0.1:1401/send

Note

Host 127.0.0.1 and port 1401 are default values and configurable in /etc/jasmin/jasmin.cfg, see jasmin.cfg / http-api.

This guide will help understand how the API works and provide Examples for sending SMS-MT.

HTTP request parameters

When calling Jasmin’s URL from an application, the below parameters must be passed (at least mandatory ones), the api will return a message id on success, see HTTP response.

Http sending SMS parameters

	Parameter

	Value / Pattern

	Example(s)

	Presence

	Description / Notes

	to

	Destination address

	20203050

	Mandatory

	Destination address, only one address is supported per request

	from

	Originating address

	20203050, Jasmin

	Optional

	Originating address, In case rewriting of the sender’s address is supported or permitted by the SMS-C used to transmit the message, this number is transmitted as the originating address

	coding

	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 or 14

	1

	Optional

	Sets the Data Coding Scheme bits, default is 0, accepts values all allowed values in SMPP protocol [1]

	username

	Text (30 char. max)

	jasmin_user

	Mandatory

	Username for Jasmin user account.

	password

	Text (30 char. max)

	jasmin_pass

	Mandatory

	Password for Jasmin user account.

	priority

	0, 1, 2 or 3

	2

	Optional

	Default is 0 (lowest priority)

	sdt

	String

	000000000100000R (send in 1 minute)

	Optional

	Specifies the scheduled delivery time at which the message delivery should be first attempted, default is value is None (message will take SMSC’s default). Supports Absolute and Relative Times per SMPP v3.4 Issue 1.2

	validity-period

	Integer

	1440

	Optional

	Message validity (minutes) to be passed to SMSC, default is value is None (message will take SMSC’s default)

	dlr

	yes or no

	yes

	Optional

	Default is no (no DLR will be tracked)

	dlr-url

	HTTP(s) URL

	http://host/dlr.php

	Mandatory if dlr

	If a DLR is requested (dlr = ‘yes’), dlr-url MUST be set, if not, dlr value is reconsidered as ‘no’

	dlr-level

	1, 2 or 3

	2

	Mandatory if dlr

	1: SMS-C level, 2: Terminal level, 3: Both

	dlr-method

	GET or POST

	GET

	Mandatory if dlr

	DLR is transmitted through http to a third party application using GET or POST method.

	tags

	Text

	1,702,9901

	Optional

	Will tag the routable to help interceptor or router enable specific business logics.

	content

	Text

	Hello world !

	Mandatory if hex-content not defined

	Content to be sent

	hex-content

	Binary hex value

	0623063106460628

	Mandatory if content not defined

	Binary to be sent

HTTP response

When the request is validated, a SubmitSM PDU is set up with the provided request parameters and sent to the routed connector through a AMQP queue, a queued message-id is returned:

Success "07033084-5cfd-4812-90a4-e4d24ffb6e3d"

Otherwise, an error is returned:

Error "No route found"

Http response code details

	HTTP Code

	HTTP Body

	Meaning

	200

	Success “07033084-5cfd-4812-90a4-e4d24ffb6e3d”

	Message is successfully queued, messaged-id is returned

	400

	Error “Mandatory arguments not found, please refer to the HTTPAPI specifications.”

	Request parameters validation error

	400

	Error “Argument _ is unknown.”

	Request parameters validation error

	400

	Error “Argument _ has an invalid value: _.”

	Request parameters validation error

	400

	Error “Mandatory argument _ is not found.”

	Request parameters validation error

	400

	dynamic messages

	Credentials validation error, c.f. User credentials

	403

	Error “Authentication failure for username:_”

	Authentication error

	403

	Error “Authorization failed for username:_”

	Credentials validation error, c.f. User credentials

	403

	Error “Cannot charge submit_sm, check RouterPB log file for details”

	User charging error

	412

	Error “No route found”

	Message routing error

	500

	Error “Cannot send submit_sm, check SMPPClientManagerPB log file for details”

	Fallback error, checking log file will provide better details

Examples

Here is an example of how to send simple GSM 03.38 messages:

Python example
http://jasminsms.com
import urllib.request, urllib.error, urllib.parse
import urllib.request, urllib.parse, urllib.error

baseParams = {'username':'foo', 'password':'bar', 'to':'+336222172', 'content':'Hello'}

Send an SMS-MT with minimal parameters
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(baseParams)).read()

Send an SMS-MT with defined originating address
baseParams['from'] = 'Jasmin GW'
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(baseParams)).read()

Here is an example of how to request acknowledgement when sending a SMS:

Python example
http://jasminsms.com
import urllib.request, urllib.error, urllib.parse
import urllib.request, urllib.parse, urllib.error

Send an SMS-MT and request terminal level acknowledgement callback to http://myserver/acknowledgement
params = {'username':'foo', 'password':'bar', 'to':'+336222172', 'content':'Hello',
 'dlr-url':'http://myserver/acknowledgement', 'dlr-level':2}
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(params)).read()

And more use cases for sending long, UCS2 (UTF16) and binary messages:

Python example
http://jasminsms.com
import urllib.request, urllib.error, urllib.parse
import urllib.request, urllib.parse, urllib.error

baseParams = {'username':'foo', 'password':'bar', 'to':'+336222172', 'content':'Hello'}

Sending long content (more than 160 chars):
baseParams['content'] = 'Very long message ..'
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(baseParams)).read()

Sending UCS2 (UTF-16) arabic content
baseParams['content'] = '\x06\x23\x06\x31\x06\x46\x06\x28'
baseParams['coding'] = 8
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(baseParams)).read()

Sending UCS2 (UTF-16) arabic binary content
baseParams['hex-content'] = '0623063106460628'
baseParams['coding'] = 8
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(baseParams)).read()

In PHP:

<?php
// Sending simple message using PHP
// http://jasminsms.com

$baseurl = 'http://127.0.0.1:1401/send'

$params = '?username=foo'
$params.= '&password=bar'
$params.= '&to='.urlencode('+336222172')
$params.= '&content='.urlencode('Hello world !')

$response = file_get_contents($baseurl.$params);
?>

In Ruby:

Sending simple message using Ruby
http://jasminsms.com

require 'net/http'

uri = URI('http://127.0.0.1:1401/send')
params = { :username => 'foo', :password => 'bar',
 :to => '+336222172', :content => 'Hello world' }
uri.query = URI.encode_www_form(params)

response = Net::HTTP.get_response(uri)

jasmin.cfg / http-api

The jasmin.cfg file (INI format, located in /etc/jasmin) contain a section called http-api where all Http API related config elements are:

 1[http-api]
 2bind = 0.0.0.0
 3port = 1401
 4
 5long_content_max_parts = 5
 6# Splitting long content can be made through SAR options or UDH
 7# Possible values are: sar and udh
 8long_content_split = udh
 9
10access_log = /var/log/jasmin/http-access.log
11log_level = INFO
12log_file = /var/log/jasmin/http-api.log
13log_format = %(asctime)s %(levelname)-8s %(process)d %(message)s
14log_date_format = %Y-%m-%d %H:%M:%S

[http-api] configuration section

	Element

	Default

	Description

	bind

	0.0.0.0

	The HTTP API listener will only bind to this specified address, given 0.0.0.0 the listener will bind on all interfaces.

	port

	1401

	The binding TCP port.

	long_content_max_parts

	5

	If the message to be sent is to be split into several parts. This is the maximum number of individual SMS-MT messages that can be used.

	long_content_split

	udh

	Splitting method: ‘udh’: Will split using 6-byte long User Data Header, ‘sar’: Will split using sar_total_segments, sar_segment_seqnum, and sar_msg_ref_num options.

	access_log

	/var/log/jasmin/http-access.log

	Where to log all http requests (and errors).

	log_*

	
	Python’s logging module configuration.

Receiving DLR

When requested through dlr-* fields when Sending SMS-MT, a delivery receipt (DLR) will be sent back to the
application url (set in dlr-url) through HTTP GET/POST depending on dlr-method.

The receiving end point must reply back using a “200 OK” status header and a body containing an acknowledgement of
receiving the DLR, if one or both of these conditions are not met, the DLRThrower service will consider reshipment of the same
message if config/dlr-thrower/max_retries is not reached (see jasmin.cfg / dlr-thrower).

In order to acknowledge DLR receipt, the receiving end point must reply back with exactly the following html body content:

ACK/Jasmin

Note

It is very important to acknowledge back each received DLR, this will prevent to receive the same message many times, c.f. Processing for details

Note

Reshipment of a message will be delayed for config/dlr-thrower/retry_delay seconds (see jasmin.cfg / dlr-thrower).

HTTP Parameters for a level 1 DLR

The following parameters are sent to the receiving end point (at dlr-url) when the DLR’s dlr-level is set to 1 (SMS-C level only)

Http parameters for a level 1 DLR

	Parameter

	Value / Pattern

	Example(s)

	Presence

	Description / Notes

	id

	Universally Unique IDentifier (UUID)

	16fd2706-8baf-433b-82eb-8c7fada847da

	Always

	Internal Jasmin’s gateway message id used for tracking messages

	message_status

	ESME_* SMPP Command status

	ESME_ROK, ESME_RINVNUMDESTS

	Always

	The delivery status

	level

	1

	1

	Always

	This is a static value indicating the dlr-level originally requested

	connector

	SMPP Connector ID

	demo_cid

	Always

	The SMPP Connector used to send the message

HTTP Parameters for a level 2 or 3 DLR

The following parameters are sent to the receiving end point (at dlr-url) when DLR’s dlr-level is set to 2 or 3 (Terminal level or all levels)

Http parameters for a level 2 or 3 DLR

	Parameter

	Value / Pattern

	Example(s)

	Presence

	Description / Notes

	id

	Universally Unique IDentifier (UUID)

	16fd2706-8baf-433b-82eb-8c7fada847da

	Always

	Internal Jasmin’s gateway message id used for tracking messages

	id_smsc

	Integer

	2567

	Always

	Message id returned from the SMS-C

	message_status

	ESME_* SMPP Command status

	ESME_ROK, ESME_RINVNUMDESTS

	Always

	The delivery status

	level

	1

	1

	Always

	This is a static value indicating the dlr-level originally requested

	connector

	SMPP Connector ID

	demo_cid

	Always

	The SMPP Connector used to send the message

	subdate

	Date & time format: YYMMDDhhmm

	1311022338

	Optional

	The time and date at which the short message was submitted

	donedate

	Date & time format: YYMMDDhhmm

	1311022338

	Optional

	The time and date at which the short message reached it’s final state

	sub

	Integer

	1

	Optional

	Number of short messages originally submitted. This is only relevant when the original message was submitted to a distribution list.The value is padded with leading zeros if necessary

	dlvrd

	Integer

	1

	Optional

	Number of short messages delivered. This is only relevant where the original message was submitted to a distribution list.The value is padded with leading zeros if necessary

	err

	Integer

	0

	Optional

	Where appropriate this may hold a Network specific error code or an SMSC error code for the attempted delivery of the message

	text

	Text (20 char. max)

	Hello foo bar

	Optional

	The first 20 characters of the short message

Processing

The flowchart below describes how dlr delivery and retrying policy is done inside DLRThrower service:

[image: DLR delivery flowchart as processed by DLRThrower service]

jasmin.cfg / dlr-thrower

The jasmin.cfg file (INI format, located in /etc/jasmin) contain a section called deliversm-thrower where all DLRThrower service related config elements are:

1[dlr-thrower]
2http_timeout = 30
3retry_delay = 30
4max_retries = 3
5log_level = INFO
6log_file = /var/log/jasmin/dlr-thrower.log
7log_format = %(asctime)s %(levelname)-8s %(process)d %(message)s
8log_date_format = %Y-%m-%d %H:%M:%S

[http-api] configuration section

	Element

	Default

	Description

	http_timeout

	30

	Sets socket timeout in seconds for outgoing client http connections.

	retry_delay

	30

	Define how many seconds should pass within the queuing system for retrying a failed throw.

	max_retries

	3

	Define how many retries should be performed for failing throws of DLR.

	log_*

	
	Python’s logging module configuration.

Receiving SMS-MO

SMS-MO incoming messages (Mobile Originated) are forwarded by Jasmin to defined URLs using simple HTTP GET/POST, the forwarding is
made by deliverSmHttpThrower service, and the URL of the receiving endpoint is selected through a route checking process (c.f. The message router).

Receiving endpoint is a third party application which acts on the messages received and potentially generates replies, (HTTP Client connector manager for more details about
HTTP Client connector management).

The parameters below are transmitted for each SMS-MO, the receiving end point must provide an url (set in jasminApi.HttpConnector.baseurl) and parse the
below parameters using GET or POST method (depends on jasminApi.HttpConnector.method).

The receiving end point must reply back using a “200 OK” status header and a body containing an acknowledgement of receiving the SMS-MO, if one or both of
these conditions are not met, the deliverSmHttpThrower service will consider reshipment of the same message if config/deliversm-thrower/max_retries is not reached,
(see jasmin.cfg / deliversm-thrower).

In order to acknowledge SMS-MO receipt, the receiving end point must reply back with exactly the following html body content:

ACK/Jasmin

Note

It is very important to acknowledge back each received SMS-MO, this will prevent to receive the same message many times, c.f. Processing for details

Note

Reshipment of a message will be delayed for config/deliversm-thrower/retry_delay seconds (see jasmin.cfg / deliversm-thrower).

HTTP Parameters

When receiving an URL call from Jasmin’s deliverSmHttpThrower service, the below parameters are delivered (at least Always present ones).

Http receiving SMS parameters

	Parameter

	Value / Pattern

	Example(s)

	Presence

	Description / Notes

	id

	Universally Unique IDentifier (UUID)

	16fd2706-8baf-433b-82eb-8c7fada847da

	Always

	Internal Jasmin’s gateway message id

	from

	Originating address

	+21620203060, 20203060, Jasmin

	Always

	Originating address

	to

	Destination address

	+21620203060, 20203060, Jasmin

	Always

	Destination address, only one address is supported per request

	origin-connector

	Alphanumeric id

	23, bcd, MTN, clickatell, beepsend

	Always

	Jasmin http connector id

	priority

	1, 2 or 3

	2

	Optional

	Default is 1 (lowest priority)

	coding

	Numeric

	8

	Optional

	Default is 0, accepts values all allowed values in SMPP protocol [2]

	validity

	YYYY-MM-DD hh:mm:ss

	2013-07-16 00-46:54

	Optional

	The validity period parameter indicates the Jasmin GW expiration time, after which the message should be discarded if not delivered to the destination

	content

	Text

	Hello world !

	Always

	Content of the message

	binary

	Hexlified binary content

	062A063062A

	Always

	Content of the message in binary hexlified [https://docs.python.org/2/library/binascii.html#binascii.hexlify] form

Note

When receiving multiple parts of a long SMS-MO, deliverSmHttpThrower service will concatenate the content of all the parts and then throw one http call with
concatenated content.

Processing

The flowchart below describes how message delivery and retrying policy are done inside deliverSmHttpThrower service:

[image: MO delivery flowchart as processed by deliverSmHttpThrower service]

jasmin.cfg / deliversm-thrower

The jasmin.cfg file (INI format, located in /etc/jasmin) contain a section called deliversm-thrower where all deliverSmHttpThrower service related config elements are:

1[deliversm-thrower]
2http_timeout = 30
3retry_delay = 30
4max_retries = 3
5log_level = INFO
6log_file = /var/log/jasmin/deliversm-thrower.log
7log_format = %(asctime)s %(levelname)-8s %(process)d %(message)s
8log_date_format = %Y-%m-%d %H:%M:%S

[http-api] configuration section

	Element

	Default

	Description

	http_timeout

	30

	Sets socket timeout in seconds for outgoing client http connections.

	retry_delay

	30

	Define how many seconds should pass within the queuing system for retrying a failed throw.

	max_retries

	3

	Define how many retries should be performed for failing throws of SMS-MO.

	log_*

	
	Python’s logging module configuration.

Monitoring metrics

Jasmin provides a native exporter for Prometheus [https://prometheus.io/] with extensive metrics obtained directly from the statistics collector.

In order to get Jasmin’s metrics, user may request a HTTP GET from the following URL:

http://127.0.0.1:1401/metrics

Note

Host 127.0.0.1 and port 1401 are default values and configurable in /etc/jasmin/jasmin.cfg, see jasmin.cfg / http-api.

HTTP response

Self documented response:

TYPE httpapi_request_count counter
HELP httpapi_request_count Http request count.
httpapi_request_count 0
TYPE httpapi_interceptor_count counter
HELP httpapi_interceptor_count Successful http request count.
httpapi_interceptor_count 0
TYPE httpapi_auth_error_count counter
HELP httpapi_auth_error_count Authentication error count.
httpapi_auth_error_count 0
TYPE httpapi_route_error_count counter
HELP httpapi_route_error_count Routing error count.
httpapi_route_error_count 0
TYPE httpapi_interceptor_error_count counter
HELP httpapi_interceptor_error_count Interceptor error count.
httpapi_interceptor_error_count 0
TYPE httpapi_throughput_error_count counter
HELP httpapi_throughput_error_count Throughput exceeded error count.
httpapi_throughput_error_count 0
TYPE httpapi_charging_error_count counter
HELP httpapi_charging_error_count Charging error count.
httpapi_charging_error_count 0
TYPE httpapi_server_error_count counter
HELP httpapi_server_error_count Server error count.
httpapi_server_error_count 0
TYPE httpapi_success_count counter
HELP httpapi_success_count Successful http request count.
httpapi_success_count 0
TYPE smppc_connected_count counter
HELP smppc_connected_count Cumulated number of successful connections.
smppc_connected_count{cid=smppprovider} 0
TYPE smppc_disconnected_count counter
HELP smppc_disconnected_count Cumulated number of disconnections.
smppc_disconnected_count{cid=smppprovider} 0
TYPE smppc_bound_count counter
HELP smppc_bound_count Number of bound sessions.
smppc_bound_count{cid=smppprovider} 0
TYPE smppc_submit_sm_request_count counter
HELP smppc_submit_sm_request_count SubmitSm pdu requests count.
smppc_submit_sm_request_count{cid=smppprovider} 0
TYPE smppc_submit_sm_count counter
HELP smppc_submit_sm_count Complete SubmitSm transactions count.
smppc_submit_sm_count{cid=smppprovider} 0
TYPE smppc_deliver_sm_count counter
HELP smppc_deliver_sm_count DeliverSm pdu requests count.
smppc_deliver_sm_count{cid=smppprovider} 0
TYPE smppc_data_sm_count counter
HELP smppc_data_sm_count Complete DataSm transactions count.
smppc_data_sm_count{cid=smppprovider} 0
TYPE smppc_interceptor_count counter
HELP smppc_interceptor_count Interceptor calls count.
smppc_interceptor_count{cid=smppprovider} 0
TYPE smppc_elink_count counter
HELP smppc_elink_count EnquireLinks count.
smppc_elink_count{cid=smppprovider} 0
TYPE smppc_throttling_error_count counter
HELP smppc_throttling_error_count Throttling errors count.
smppc_throttling_error_count{cid=smppprovider} 0
TYPE smppc_interceptor_error_count counter
HELP smppc_interceptor_error_count Interception errors count.
smppc_interceptor_error_count{cid=smppprovider} 0
TYPE smppc_other_submit_error_count counter
HELP smppc_other_submit_error_count Other errors count.
smppc_other_submit_error_count{cid=smppprovider} 0
TYPE smppsapi_connected_count counter
HELP smppsapi_connected_count Number of connected sessions.
smppsapi_connected_count 0
TYPE smppsapi_connect_count counter
HELP smppsapi_connect_count Cumulated number of connect requests.
smppsapi_connect_count 0
TYPE smppsapi_disconnect_count counter
HELP smppsapi_disconnect_count Cumulated number of disconnect requests.
smppsapi_disconnect_count 0
TYPE smppsapi_interceptor_count counter
HELP smppsapi_interceptor_count Interceptor calls count.
smppsapi_interceptor_count 0
TYPE smppsapi_bound_trx_count counter
HELP smppsapi_bound_trx_count Number of bound sessions in transceiver mode.
smppsapi_bound_trx_count 0
TYPE smppsapi_bound_rx_count counter
HELP smppsapi_bound_rx_count Number of bound sessions in receiver mode.
smppsapi_bound_rx_count 0
TYPE smppsapi_bound_tx_count counter
HELP smppsapi_bound_tx_count Number of bound sessions in transmitter mode.
smppsapi_bound_tx_count 0
TYPE smppsapi_bind_trx_count counter
HELP smppsapi_bind_trx_count Number of bind requests in transceiver mode.
smppsapi_bind_trx_count 0
TYPE smppsapi_bind_rx_count counter
HELP smppsapi_bind_rx_count Number of bind requests in receiver mode.
smppsapi_bind_rx_count 0
TYPE smppsapi_bind_tx_count counter
HELP smppsapi_bind_tx_count Number of bind requests in transmitter mode.
smppsapi_bind_tx_count 0
TYPE smppsapi_unbind_count counter
HELP smppsapi_unbind_count Cumulated number of unbind requests.
smppsapi_unbind_count 0
TYPE smppsapi_submit_sm_request_count counter
HELP smppsapi_submit_sm_request_count SubmitSm pdu requests count.
smppsapi_submit_sm_request_count 0
TYPE smppsapi_submit_sm_count counter
HELP smppsapi_submit_sm_count Complete SubmitSm transactions count.
smppsapi_submit_sm_count 0
TYPE smppsapi_deliver_sm_count counter
HELP smppsapi_deliver_sm_count DeliverSm pdu requests count.
smppsapi_deliver_sm_count 0
TYPE smppsapi_data_sm_count counter
HELP smppsapi_data_sm_count Complete DataSm transactions count.
smppsapi_data_sm_count 0
TYPE smppsapi_elink_count counter
HELP smppsapi_elink_count EnquireLinks count.
smppsapi_elink_count 0
TYPE smppsapi_throttling_error_count counter
HELP smppsapi_throttling_error_count Throttling errors count.
smppsapi_throttling_error_count 0
TYPE smppsapi_interceptor_error_count counter
HELP smppsapi_interceptor_error_count Interception errors count.
smppsapi_interceptor_error_count 0
TYPE smppsapi_other_submit_error_count counter
HELP smppsapi_other_submit_error_count Other errors count.
smppsapi_other_submit_error_count 0

Note

The statistics exposed through this api are also exposed through jcli’s Stats manager module.

Checking account balance

In order to check user account balance and quotas, user may request a HTTP GET/POST from the following URL:

http://127.0.0.1:1401/balance

Note

Host 127.0.0.1 and port 1401 are default values and configurable in /etc/jasmin/jasmin.cfg, see jasmin.cfg / http-api.

HTTP request parameters

Http balance request parameters

	Parameter

	Value / Pattern

	Example(s)

	Presence

	Description / Notes

	username

	Text (30 char. max)

	jasmin_user

	Mandatory

	Username for Jasmin user account.

	password

	Text (30 char. max)

	jasmin_pass

	Mandatory

	Password for Jasmin user account.

HTTP response

Successful response:

{"balance": 100.0, "sms_count": "ND"}

Otherwise, an error is returned.

Examples

Here is an example of how to check balance:

Python example
http://jasminsms.com
import urllib.request, urllib.error, urllib.parse
import urllib.request, urllib.parse, urllib.error
import json

Check user balance
params = {'username':'foo', 'password':'bar'}
response = urllib.request.urlopen("http://127.0.0.1:1401/balance?%s" % urllib.parse.urlencode(params)).read()
response = json.loads(response)

print('Balance:', response['balance'])
print('SMS Count:', response['sms_count'])

#Balance: 100.0
#SMS Count: ND

Checking rate price

It is possible to ask Jasmin’s HTTPAPI for a message rate price before sending it, the request will lookup the route to be considered for the message and will provide the rate price if defined.

Request is done through HTTP GET/POST to the following URL:

http://127.0.0.1:1401/rate

Note

Host 127.0.0.1 and port 1401 are default values and configurable in /etc/jasmin/jasmin.cfg, see jasmin.cfg / http-api.

HTTP request parameters

Http rate request parameters

	Parameter

	Value / Pattern

	Example(s)

	Presence

	Description / Notes

	to

	Destination address

	20203050

	Mandatory

	Destination address, only one address is supported per request

	from

	Originating address

	20203050, Jasmin

	Optional

	Originating address, In case rewriting of the sender’s address is supported or permitted by the SMS-C used to transmit the message, this number is transmitted as the originating address

	coding

	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13 or 14

	1

	Optional

	Sets the Data Coding Scheme bits, default is 0, accepts values all allowed values in SMPP protocol [1]

	username

	Text (30 char. max)

	jasmin_user

	Mandatory

	Username for Jasmin user account.

	password

	Text (30 char. max)

	jasmin_pass

	Mandatory

	Password for Jasmin user account.

	content

	Text

	Hello world !

	Optional

	Content to be sent

HTTP response

Successful response:

{"submit_sm_count": 2, "unit_rate": 2.8}

Where submit_sm_count is the number of message units if the content is longer than 160 characters, content parameter is optional for requesting rate price.

Otherwise, an error is returned.

Otherwise, an error is returned:

Error "No route found"

Examples

Here is an example of how to check rate price:

Python example
http://jasminsms.com
import urllib.request, urllib.error, urllib.parse
import urllib.request, urllib.parse, urllib.error
import json

Check message rate price
params = {'username':'foo', 'password':'bar', 'to': '06222172'}
response = urllib.request.urlopen("http://127.0.0.1:1401/rate?%s" % urllib.parse.urlencode(params)).read()
response = json.loads(response)

print('Unit rate price:', response['unit_rate'])
print('Units:', response['submit_sm_count'])

#Unit rate price: 2.8
#Units: 1

Footnotes

[1]
(1,2,3)
Billing

[2]

Data coding schemes

	Bitmask

	Value

	Meaning

	0 0 0 0 0 0 0 0

	0

	SMSC Default Alphabet

	0 0 0 0 0 0 0 1

	1

	IA5 (CCITT T.50)/ASCII (ANSI X3.4)

	0 0 0 0 0 0 1 0

	2

	Octet unspecified (8-bit binary)

	0 0 0 0 0 0 1 1

	3

	Latin 1 (ISO-8859-1)

	0 0 0 0 0 1 0 0

	4

	Octet unspecified (8-bit binary)

	0 0 0 0 0 1 0 1

	5

	JIS (X 0208-1990)

	0 0 0 0 0 1 1 0

	6

	Cyrllic (ISO-8859-5)

	0 0 0 0 0 1 1 1

	7

	Latin/Hebrew (ISO-8859-8)

	0 0 0 0 1 0 0 0

	8

	UCS2 (ISO/IEC-10646)

	0 0 0 0 1 0 0 1

	9

	Pictogram Encoding

	0 0 0 0 1 0 1 0

	10

	ISO-2022-JP (Music Codes)

	0 0 0 0 1 1 0 1

	13

	Extended Kanji JIS(X 0212-1990)

	0 0 0 0 1 1 1 0

	14

	KS C 5601

SMPP Server API

This document is targeted at software designers/programmers wishing to integrate SMS messaging through a stateful tcp protocol SMPP v3.4, if you feel this does not fit your needs and that you are more “web-service-guy” then you still can try HTTP API.

SMS Messages can be transmitted using SMPP protocol, the following requirements must be met to enable the service :

	You need a Jasmin user account

	You need sufficient credit on your Jasmin user account [1]

Note

The ABCs:

	MT is referred to Mobile Terminated, a SMS-MT is an SMS sent to mobile

	MO is referred to Mobile Originated, a SMS-MO is an SMS sent from mobile

Features

The SMPP Server API allows you to send and receive SMS and delivery receipts (DLR) through Jasmin’s connectors, send and receive long (more than 160 characters) SMS and unicode/binary content.

jasmin.cfg / smpp-server

The jasmin.cfg file (INI format, located in /etc/jasmin) contain a section called smpp-server where all SMPP Server API related config elements are:

 1[smpp-server]
 2id = "smpps_01"
 3bind = 0.0.0.0
 4port = 2775
 5
 6sessionInitTimerSecs = 30
 7enquireLinkTimerSecs = 30
 8inactivityTimerSecs = 300
 9responseTimerSecs = 60
10pduReadTimerSecs = 30
11
12log_level = INFO
13log_file = /var/log/jasmin/default-smpps_01.log
14log_format = %(asctime)s %(levelname)-8s %(process)d %(message)s
15log_date_format = %Y-%m-%d %H:%M:%S

[smpp-server] configuration section

	Element

	Default

	Description

	id

	smpps_01

	The SMPP Server id, used to identify the instance in case you use multiple servers per Jasmin process.

	bind

	0.0.0.0

	The SMPP Server API listener will only bind to this specified address, given 0.0.0.0 the listener will bind on all interfaces.

	port

	2775

	The binding TCP port.

	sessionInitTimerSecs

	30

	Protocol tuning parameter: timeout for a bind request.

	enquireLinkTimerSecs

	30

	Protocol tuning parameter: timeout for an enquire_link request.

	inactivityTimerSecs

	300

	Protocol tuning parameter: inactivity timeout.

	responseTimerSecs

	60

	Protocol tuning parameter: global request timeout.

	pduReadTimerSecs

	30

	Protocol tuning parameter: binary pdu ready timeout.

	log_*

	
	Python’s logging module configuration.

Binding to SMPP Server

Using a proper SMPP Client application (or a Jasmin SMPP Client), the following parameters must be considered:

SMPP Server binding parameters

	Parameter

	Value / Pattern

	Example(s)

	Presence

	Description / Notes

	system_id

	Text (30 char. max)

	jasmin_user

	Mandatory

	Username for Jasmin user account.

	password

	Text (30 char. max)

	jasmin_pass

	Mandatory

	Password for Jasmin user account.

Supported SMPP PDUs

Jamsin’s SMPP Server is supporting the following PDUs:

	bind_transmitter

	bind_transceiver

	bind_receiver

	unbind

	submit_sm

	deliver_sm

	enquire_link

Footnotes

[1]
Billing

The message router

The message router is Jasmin’s decision making component for routing every type of exchanged message through the gateway:

	MO Messages (deliver_sm)

	MT Messages (submit_sm)

The router is provisioned through:

	Perspective broker interface (python programmatic API)

	jCli modules: MO router manager and MT router manager

Each time a message is requiring a route decision the following process is executed:

Process flow

[image: MO and MT routing process flow]

Routing process flow

There’s one MORoutingTable and one MTRoutingTable objects holding respective routes for each direction (MT or MO),
these are Route objects that hold one or many Filter (s) objects and one destination Connector (or many connectors
in some specific cases, c.f. Multiple connectors).

As explained by the above routing process flow figure, for each message and depending on its direction, a routing table is
loaded and an iterative testing is run in order to select a final destination connector or to reject (returning no connector) it,
routes are selected in descendant order, and their respective filter objects are tested against the Routable object (It is an
extension of the low-level SMPP PDU object representing a message, more information in Routable).

Examples

MO Routing

Having the below MO routing table set through a jCli console session:

jcli : morouter -l
#MO Route order Type Connector ID(s) Filter(s)
#30 StaticMORoute http_3 <DestinationAddrFilter (dst_addr=^\+33\d+)>
#20 RandomRoundrobinMORoute http_1, http_2 <DateIntervalFilter (2015-06-01,2015-08-31)>, <TimeIntervalFilter (08:00:00,18:00:00)>
#0 DefaultRoute http_def
Total MO Routes: 3

The following routing cases are considered:

	MO message is routed to http_3 if:

	Its destination address matches the regular expression “^+33d+”

	MO message is routed to http_1 OR http_2 if:

	Its received in summer months (June, July and August) of year 2015 and in working hours interval (8pm to 6am)

	MO message is routed to http_def if:

	None of the above routes are matched (fallback / default route)

MT Routing

Having the below MT routing table set through a jCli console session:

jcli : mtrouter -l
#MT Route order Type Rate Connector ID(s) Filter(s)
#100 RandomRoundrobinMTRoute 0.00 smpp_1, smpp_2 <DestinationAddrFilter (dst_addr=^\+33\d+)>
#91 StaticMTRoute 0.00 smpp_4 <GroupFilter (gid=G2)>, <TimeIntervalFilter (08:00:00,18:00:00)>
#90 StaticMTRoute 0.00 smpp_3 <GroupFilter (gid=G2)>
Total MT Routes: 3

The following routing cases are considered:

	MT message is routed to smpp_1 OR smpp_2 if:

	Its destination address matches the regular expression “^+33d+”

	MT message is routed to smpp_4 if:

	Its sent by a user in group G2 and in working hours interval (8pm to 6am)

	MT message is routed to smpp_3 if:

	Its sent by a user in group G2

Note

The route order is very important: if we swap last both routes (#90 and #91) we will run into a shadowing route where all MT messages sent by a user in group G2 will be routed to smpp_3, no matter what time of the day it is.

Note

In this example, there’s no DefaultRoute, this will lead to message rejection if none of the configured routes are matched.

Note

Route’s rate are discussed in Billing.

Router components

The router components are mainly python objects having the unique responsibility of routing messages to Jasmin connectors.

Routable

The Routable class is extended by child classes to hold necessary information about the message to be routed.

[image: jasmin.routing.Routables.*]

jasmin.routing.Routables.*

The SimpleRoutablePDU is only used for Jasmin unit testing, RoutableSubmitSm and RoutableDeliverSm are used depending
on the message direction:

	MO: RoutableDeliverSm

	MT: RoutableSubmitSm

All routables provide a tagging api through the addTag(), hasTag(), getTags(), removeTag(), flushTags() methods,
this feature is mainly used in the interceptor, there’s a concrete example of such usage
here.

RoutableSubmitSm attributes

	Attribute

	Type

	Description

	PDU

	smpp.pdu.pdu_types.PDURequest

	The SMPP submit_sm PDU

	user

	jasmin.routing.jasminApi.User

	Jasmin user sending the message

	date_time

	datetime.datetime

	Date & time of message send request

RoutableDeliverSm attributes

	Attribute

	Type

	Description

	PDU

	smpp.pdu.pdu_types.PDURequest

	The SMPP deliver_sm PDU

	connector

	jasmin.routing.jasminApi.Connector

	Jasmin origin connector of the message

	date_time

	datetime.datetime

	Date & time of message reception

Connector

The Connector class is extended by child classes to represent concrete HTTP or SMPP Client connectors.

[image: jasmin.routing.jasminApi.Connector and childs]

jasmin.routing.jasminApi.Connector and childs

Filter

The Filter class is extended by child classes to define specific filters which are run by Jasmin router to match a
desired Routable, every filter have a public match(routable) method returning a boolean value (True if the filter
matches the given Routable).

As explained, filters provide an advanced and customizable method to match for routables and decide which route to consider, the
figure below shows the Filter implementations provided by Jasmin, you can extend the Filter class and build a new filter
of your own.

The usedFor attribute indicates the filter-route compatibility, as some filters are not suitable for both MO and MT routes like
the examples below:

	UserFilter and GroupFilter: MO Messages are not identified by a user or a group, they are received through a connector

	ConnectorFilter: MT Messages are not coming from a connector, they are sent by a known user/group.

[image: jasmin.routing.Filters.*]

jasmin.routing.Filters.*

Route

A Route class holds one or many filters, the matchFilters(routable) method is called to match the given routable against
every filter of the Route (using AND operation when there’s many filters), if the matching succeed, the Jamsin router will ask
for the Connector to consider by calling getConnector() method which will return back the Route ‘s connector.

[image: jasmin.routing.Routes.*]

jasmin.routing.Routes.*

Static and default routes are the simplest implemented routes, the difference between them is:

	DefaultRoute ‘s matchFilter() method will always return True, it is usually a fallback route matching any Routable

	StaticMORoute and StaticMTRoute will return one Connector after matching the filters with matchFilters(routable) method

There’s a lot of things you can do by extending the Route class, here’s a bunch of possibilities:

	Best quality routing: Implement a connector scoring system to always return the best quality route for a given message

Multiple connectors

When extending Route class, it is possible to customize the behavior of the route and that’s what RoundrobinMORoute and RoundrobinMTRoute
do, they are initially provisioned with a set of connectors, and the getConnector() method is overloaded to return a random connector from it;
this can be a basic usage of a load balancer route.

The newly added (Jasmin 0.9b10+) has new FailoverMORoute and FailoverMTRoute routes, they are also extending the Route class to provide failover
on top of multiple connectors.

RoutingTable

The RoutingTable class is extended by destination-specific child classes (MO or MT), each class provide a Route provisioning api:

	add(route, order): Will add a new route at a given order, will replace an older route having the same order

	remove(order): Will remove the route at the given order

	getAll(): Will return all the provisioned routes

	flush(): Will remove all provisioned routes

The getRouteFor(routable) will get the right route to consider for a given routable, this method will iterate through all the provisioned
routes in descendant order to call their respective matchFilters(routable) method.

[image: jasmin.routing.RoutingTables.*]

jasmin.routing.RoutingTables.*

Interception

Starting from 0.7.0, Jasmin provides a convenient way for users to hook third party logics on intercepted
messages (submit_sm or deliver_sm) before proceding to The message router.

Interception of message is based on filter matching, just like the router; every intercepted message will be
handed to a user-script written in Python [http://www.python.org].

This feature permits users to implement custom behaviors on top of Jasmin router, here’s some possible
scenarios:

	Billing & charging of MO messages,

	Implement HLR lookup for a better SMS MT routing,

	Change a pdu content: fix npi/ton, prefixing/suffixing numbers, etc …

	Modify Jasmin’s response for the message: send back a ESME_RINVDSTADR instead of ESME_ROK for example.

	etc ..

Enabling interceptor

Jasmin’s interceptor is a system service that run separately from Jasmin, it can be hosted on remote server as
well; interceptord is a system service just like jasmind, so simply start it by typing:

sudo systemctl start jasmin-interceptord

Note

After starting the interceptord service, you may check /var/log/jasmin/interceptor.log to
ensure everything is okay.

Then you need to enable communication between jasmind and interceptord services by editing jasmind
start script (locate the jasmind.service file in /etc/systemd) and replacing the following line:

ExecStart=/usr/bin/jasmind.py --username jcliadmin --password jclipwd

by:

ExecStart=/usr/bin/jasmind.py --username jcliadmin --password jclipwd --enable-interceptor-client

The last step is to restart jasmind and check /var/log/jasmin/interceptor.log to ensure connection has
been successfully established by finding the following line:

INFO XXXX Authenticated Avatar: iadmin

Intercepting a message

As stated earlier, interceptor is behaving similarly to The message router, here’s an example of setting up
a MO message (deliver_sm) interception rule through jcli management console:

jcli : mointerceptor -a
Adding a new MO Interceptor: (ok: save, ko: exit)
> type DefaultInterceptor
<class 'jasmin.routing.Interceptors.DefaultInterceptor'> arguments:
script
> script python3(/opt/jasmin-scripts/interception/mo-interceptor.py)
> ok
Successfully added MOInterceptor [DefaultInterceptor] with order:0

Same thing apply to setting up a MT message (submit_sm) interception rule, here’s another example using a
filtered rule instead of a default one:

jcli : mtinterceptor -a
Adding a new MT Interceptor: (ok: save, ko: exit)
> type StaticMTInterceptor
<class 'jasmin.routing.Interceptors.DefaultInterceptor'> arguments:
filters, script
> script python3(/opt/jasmin-scripts/interception/mt-interceptor.py)
> filters U-foo;DA-33
> order 100
> ok
Successfully added MTInterceptor [StaticMTInterceptor] with order:100

As show in the above examples, the interception rules are straightforward, any matched message will be handed to
the script you set through the script python3(<path_to_pyfile>) instruction.

When your python script is called it will get the following global variables set:

	routable: one of the jasmin.routing.Routables.Routable inheriters (Routable for more details)

	smpp_status: (default to 0) it is the smpp response that Jasmin must return for the message, more details
in Controlling response

	http_status: (default to 0) it is the http response that Jasmin must return for the message, more details
in Controlling response

The script can:

	Override routable parameters like setting destination or source addresses, short message, etc …

	Tag the routable to help the router matching a desired rule (useful for HRL lookup routing)

	Control Jasmin response by setting smpp_status and/or http_status.

Some practical examples are given below.

Controlling response

The interceptor script can reject message before it goes to the router, this can be useful for implementing third
party controls like:

	Billing and charging authorization: reject message if user has no credits,

	Reject some illegal message content,

	Enable anti-spam to protect destination users from getting flooded,

	etc …

In order to reject a message, depending on the source of message (httpapi ? smpp server ? smpp client ?) the
script must set smpp_status and/or http_status accordingly to the error to be returned back, here’s an
error mapping table for smpp:

smpp_status Error mapping

	Value

	SMPP Status

	Description

	0

	ESME_ROK

	No error

	1

	ESME_RINVMSGLEN

	Message Length is invalid

	2

	ESME_RINVCMDLEN

	Command Length is invalid

	3

	ESME_RINVCMDID

	Invalid Command ID

	4

	ESME_RINVBNDSTS

	Invalid BIND Status for given command

	5

	ESME_RALYBND

	ESME Already in Bound State

	6

	ESME_RINVPRTFLG

	Invalid Priority Flag

	7

	ESME_RINVREGDLVFLG

	Invalid Registered Delivery Flag

	8

	ESME_RSYSERR

	System Error

	265

	ESME_RINVBCASTAREAFMT

	Broadcast Area Format is invalid

	10

	ESME_RINVSRCADR

	Invalid Source Address

	11

	ESME_RINVDSTADR

	Invalid Dest Addr

	12

	ESME_RINVMSGID

	Message ID is invalid

	13

	ESME_RBINDFAIL

	Bind Failed

	14

	ESME_RINVPASWD

	Invalid Password

	15

	ESME_RINVSYSID

	Invalid System ID

	272

	ESME_RINVBCAST_REP

	Number of Repeated Broadcasts is invalid

	17

	ESME_RCANCELFAIL

	Cancel SM Failed

	274

	ESME_RINVBCASTCHANIND

	Broadcast Channel Indicator is invalid

	19

	ESME_RREPLACEFAIL

	Replace SM Failed

	20

	ESME_RMSGQFUL

	Message Queue Full

	21

	ESME_RINVSERTYP

	Invalid Service Type

	196

	ESME_RINVOPTPARAMVAL

	Invalid Optional Parameter Value

	260

	ESME_RINVDCS

	Invalid Data Coding Scheme

	261

	ESME_RINVSRCADDRSUBUNIT

	Source Address Sub unit is Invalid

	262

	ESME_RINVDSTADDRSUBUNIT

	Destination Address Sub unit is Invalid

	263

	ESME_RINVBCASTFREQINT

	Broadcast Frequency Interval is invalid

	257

	ESME_RPROHIBITED

	ESME Prohibited from using specified operation

	273

	ESME_RINVBCASTSRVGRP

	Broadcast Service Group is invalid

	264

	ESME_RINVBCASTALIAS_NAME

	Broadcast Alias Name is invalid

	270

	ESME_RBCASTQUERYFAIL

	query_broadcast_sm operation failed

	51

	ESME_RINVNUMDESTS

	Invalid number of destinations

	52

	ESME_RINVDLNAME

	Invalid Distribution List Name

	267

	ESME_RINVBCASTCNTTYPE

	Broadcast Content Type is invalid

	266

	ESME_RINVNUMBCAST_AREAS

	Number of Broadcast Areas is invalid

	192

	ESME_RINVOPTPARSTREAM

	Error in the optional part of the PDU Body

	64

	ESME_RINVDESTFLAG

	Destination flag is invalid (submit_multi)

	193

	ESME_ROPTPARNOTALLWD

	Optional Parameter not allowed

	66

	ESME_RINVSUBREP

	Invalid submit with replace request (i.e. submit_sm with replace_if_present_flag set)

	67

	ESME_RINVESMCLASS

	Invalid esm_class field data

	68

	ESME_RCNTSUBDL

	Cannot Submit to Distribution List

	69

	ESME_RSUBMITFAIL

	submit_sm or submit_multi failed

	256

	ESME_RSERTYPUNAUTH

	ESME Not authorised to use specified service_type

	72

	ESME_RINVSRCTON

	Invalid Source address TON

	73

	ESME_RINVSRCNPI

	Invalid Source address NPI

	258

	ESME_RSERTYPUNAVAIL

	Specified service_type is unavailable

	269

	ESME_RBCASTFAIL

	broadcast_sm operation failed

	80

	ESME_RINVDSTTON

	Invalid Destination address TON

	81

	ESME_RINVDSTNPI

	Invalid Destination address NPI

	83

	ESME_RINVSYSTYP

	Invalid system_type field

	84

	ESME_RINVREPFLAG

	Invalid replace_if_present flag

	85

	ESME_RINVNUMMSGS

	Invalid number of messages

	88

	ESME_RTHROTTLED

	Throttling error (ESME has exceeded allowed message limits

	271

	ESME_RBCASTCANCELFAIL

	cancel_broadcast_sm operation failed

	97

	ESME_RINVSCHED

	Invalid Scheduled Delivery Time

	98

	ESME_RINVEXPIRY

	Invalid message validity period (Expiry time)

	99

	ESME_RINVDFTMSGID

	Predefined Message Invalid or Not Found

	100

	ESME_RX_T_APPN

	ESME Receiver Temporary App Error Code

	101

	ESME_RX_P_APPN

	ESME Receiver Permanent App Error Code

	102

	ESME_RX_R_APPN

	ESME Receiver Reject Message Error Code

	103

	ESME_RQUERYFAIL

	query_sm request failed

	259

	ESME_RSERTYPDENIED

	Specified service_type is denied

	194

	ESME_RINVPARLEN

	Invalid Parameter Length

	268

	ESME_RINVBCASTMSGCLASS

	Broadcast Message Class is invalid

	255

	ESME_RUNKNOWNERR

	Unknown Error

	254

	ESME_RDELIVERYFAILURE

	Delivery Failure (used for data_sm_resp)

	195

	ESME_RMISSINGOPTPARAM

	Expected Optional Parameter missing

As for http errors, the value you set in http_status will be the http error code to return.

Note

When setting http_status to some value different from 0, the smpp_status value will be automatically
set to 255 (ESME_RUNKNOWNERR).

Note

When setting smpp_status to some value different from 0, the http_status value will be automatically
set to 520 (Unknown error).

Note

When setting smpp_status to 0, the routing process will be bypassed and an ESME_ROK status is returned.

Checkout the MO Charging example to see how’s rejection is done.

Scripting examples

You’ll find below some helping examples of scripts used to intercept MO and/or MT messages.

HLR Lookup routing

The following script will help the router decide where to send the MT message, let’s say we have some HLR lookup
webservice to call in order to know to which network the destination number belong, and then tag the routable
for later filtering in router:

"This script will call HLR lookup api to get the MCC/MNC of the destination number"

import requests, json

hlr_lookup_url = "https://api.some-provider.com/hlr/lookup"
data = json.dumps({'number': routable.pdu.params['destination_addr']})
r = requests.post(hlr_lookup_url, data, auth=('user', '*****'))

if r.json['mnc'] == '214':
 # Spain
 if r.json['mcc'] == '01':
 # Vodaphone
 routable.addTag(21401)
 elif r.json['mcc'] == '03':
 # Orange
 routable.addTag(21403)
 elif r.json['mcc'] == '25':
 # Lyca mobile
 routable.addTag(21425)

The script is tagging the routable if destination is Vodaphone, Orange or Lyca mobile; that’s because we need
to route message to different connector based on destination network, let’s say:

	Vodaphone needs to be routed through connectorA

	Orange needs to be routed through connectorB

	Lyca mobile needs to be routed through connectorC

	All the rest needs to be routed through connectorD

Here’s the routing table to execute the above example:

jcli : mtrouter -l
#Order Type Rate Connector ID(s) Filter(s)
#102 StaticMTRoute 0 (!) smppc(connectorA) <TG (tag=21401)>
#101 StaticMTRoute 0 (!) smppc(connectorB) <TG (tag=21403)>
#100 StaticMTRoute 0 (!) smppc(connectorC) <TG (tag=21425)>
#0 DefaultRoute 0 (!) smppc(connectorD)
Total MT Routes: 4

MO Charging

In this case, the script is calling CGRateS [http://www.cgrates.org/] charging system to check if user has sufficient balance to send
sms, based on the following script, Jasmin will return a ESME_ROK if user balance, or ESME_RDELIVERYFAILURE
if not:

"""This script will receive Mobile-Originated messages and
ask CGRateS for authorization through ApierV2.GetMaxUsage call.
"""
import json, socket
from datetime import datetime

CGR_HOST="172.20.20.140"
CGR_PORT=3422

def call(sck, name, params):
 # Build the request
 request = dict(id=1,
 params=list(params),
 method=name)
 sck.sendall(json.dumps(request).encode())
 # This must loop if resp is bigger than 4K
 buffer = ''
 data = True
 while data:
 data = sck.recv(4096)
 buffer += data
 if len(data) < 4096:
 break
 response = json.loads(buffer.decode())
 if response.get('id') != request.get('id'):
 raise Exception("expected id=%s, received id=%s: %s"
 %(request.get('id'), response.get('id'),
 response.get('error')))

 if response.get('error') is not None:
 raise Exception(response.get('error'))

 return response.get('result')

sck = None
globals()['sck'] = sck
globals()['json'] = json
try:
 sck = socket.create_connection((CGR_HOST, CGR_PORT))

 # Prepare for RPC call
 name = "ApierV2.GetMaxUsage"
 params = [{
 "Category": "sms-mt",
 "Usage": "1",
 "Direction": "*outbound",
 "ReqType": "*subscribers",
 "TOR": "*sms-mt",
 "ExtraFields": {"Cli": routable.pdu.params['source_addr']},
 "Destination": routable.pdu.params['destination_addr'],
 "Account": "*subscribers",
 "Tenant": "*subscribers",
 "SetupTime": datetime.utcnow().isoformat() + 'Z'}]

 result = call(sck, name, params)
except Exception as e:
 # We got an error when calling for charging
 # Return ESME_RDELIVERYFAILURE
 smpp_status = 254
else:
 # CGRateS has returned a value

 if type(result) == int and result >= 1:
 # Return ESME_ROK
 smpp_status = 0
 else:
 # Return ESME_RDELIVERYFAILURE
 smpp_status = 254
finally:
 if sck is not None:
 sck.close()

Overriding source address

There’s some cases where you need to override sender-id due to some MNO policies, in the following example all
intercepted messages will have their sender-id set to 123456789:

"This script will override sender-id"

routable.pdu.params['source_addr'] = '123456789'

Note

Some pdu parameters require locking to protect them from being updated by Jasmin, more on this.

Chaning TON or NPI

In order to change the ton or npi value for source or destination address, the according values need to be set and locked, in order to prevent them from getting overwritten by the client connector:

from smpp.pdu.pdu_types import AddrTon, AddrNpi

routable.pdu.params['source_addr_ton'] = AddrTon.ALPHANUMERIC;;
routable.lockPduParam('source_addr_ton');
routable.pdu.params['source_addr_npi'] = AddrNpi.ISDN;
routable.lockPduParam('source_addr_npi');

routable.pdu.params['dest_addr_ton'] = AddrTon.INTERNATIONAL;
routable.lockPduParam('dest_addr_ton');
routable.pdu.params['dest_addr_npi'] = AddrNpi.ISDN;
routable.lockPduParam('dest_addr_npi');

Activate logging

The following is an example of activating log inside a script:

"This is how logging is done inside interception script"

import logging

Set logger
logger = logging.getLogger('logging-example')
if len(logger.handlers) != 1:
 hdlr = logging.FileHandler('/var/log/jasmin/some_file.log')
 formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
 hdlr.setFormatter(formatter)
 logger.addHandler(hdlr)
 logger.setLevel(logging.DEBUG)

logger.info('Got pdu: %s' % routable.pdu)

Enforcing DLR

Ask for DLR for all submit_sm pdus, no matter the downstream user choice, can be used for route qualification and scoring purposes.

"This script will enforce sending message while asking for DLR"

from smpp.pdu.pdu_types import RegisteredDeliveryReceipt, RegisteredDelivery

routable.pdu.params['registered_delivery'] = RegisteredDelivery(
 RegisteredDeliveryReceipt.SMSC_DELIVERY_RECEIPT_REQUESTED)

Programming examples

Subsequent chapters present how to send and receive messages through Jasmin HTTP API and some more
advanced use cases, such as manipulating receipts and complex routings, will look like.

It is assumed the reader has already installed Jasmin and at least read the HTTP API
and The message router chapters and knows enough about Jasmin’s architecture/design concepts.

Sending SMS

Sending a SMS is done through the HTTP API:

Python example
http://jasminsms.com
import urllib.request, urllib.error, urllib.parse
import urllib.request, urllib.parse, urllib.error

baseParams = {'username':'foo', 'password':'bar', 'to':'+336222172', 'content':'Hello'}

Send an SMS-MT with minimal parameters
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(baseParams)).read()

Send an SMS-MT with defined originating address
baseParams['from'] = 'Jasmin GW'
urllib.request.urlopen("http://127.0.0.1:1401/send?%s" % urllib.parse.urlencode(baseParams)).read()

In PHP:

<?php
// Sending simple message using PHP
// http://jasminsms.com

$baseurl = 'http://127.0.0.1:1401/send'

$params = '?username=foo'
$params.= '&password=bar'
$params.= '&to='.urlencode('+336222172')
$params.= '&content='.urlencode('Hello world !')

$response = file_get_contents($baseurl.$params);
?>

In Ruby:

Sending simple message using Ruby
http://jasminsms.com

require 'net/http'

uri = URI('http://127.0.0.1:1401/send')
params = { :username => 'foo', :password => 'bar',
 :to => '+336222172', :content => 'Hello world' }
uri.query = URI.encode_www_form(params)

response = Net::HTTP.get_response(uri)

c.f. HTTP API for more details about sending SMS with receipt enquiry, long content
etc …

Receiving SMS

Receiving a SMS is done through the HTTP API, this a PHP script pointed by Jasmin for every
received SMS (using routing):

<?php
// Receiving simple message using PHP through HTTP Post
// This example will store every received SMS to a SQL table
// http://jasminsms.com

$MO_SMS = $_POST;

$db = pg_connect('host=127.0.0.1 port=5432 dbname=sms_demo user=jasmin password=jajapwd');
if (!$db)
 // We'll not ACK the message, Jasmin will resend it later
 die("Error connecting to DB");

$QUERY = "INSERT INTO sms_mo(id, from, to, cid, priority, coding, validity, content) ";
$QUERY.= "VALUES ('%s', '%s', '%s', '%s', '%s', '%s', '%s', '%s');";

$Q = sprintf($QUERY, pg_escape_string($MO_SMS['id']),
 pg_escape_string($MO_SMS['from']),
 pg_escape_string($MO_SMS['to']),
 pg_escape_string($MO_SMS['origin-connector']),
 pg_escape_string($MO_SMS['priority']),
 pg_escape_string($MO_SMS['coding']),
 pg_escape_string($MO_SMS['validity']),
 pg_escape_string($MO_SMS['content'])
);
pg_query($Q);
pg_close($db);

// Acking back Jasmin is mandatory
echo "ACK/Jasmin";

In the above example, there’s an error handling where the message is not ACKed if there’s a database connection
problem, if it occurs, the script will return “Error connecting to DB” when Jasmin HTTP thrower is waiting for
a “ACL/Jasmin”, this will lead to a message re-queue and later re-delivery to the same script, this behaviour is
explained in Processing.

Another example of an interactive SMS application:

<?php
// Will filter received messages, if the syntax is correct (weather <city name>)
// it will provide a `fake` weather forecast back to the user.
// http://jasminsms.com

$MO_SMS = $_POST;

// Acking back Jasmin is mandatory
echo "ACK/Jasmin";

// Syntax check
if (!preg_match('/^(weather) (.*)/', $MO_SMS['content'], $matches))
 $RESPONSE = "SMS Syntax error, please type 'weather city' to get a fresh weather forecast";
else
 $RESPONSE = $martches[2]." forecast: Sunny 21°C, 13Knots NW light wind";

// Send $RESPONSE back to the user ($MO_SMS['from'])
$baseurl = 'http://127.0.0.1:1401/send'
$params = '?username=foo'
$params.= '&password=bar'
$params.= '&to='.urlencode($MO_SMS['from'])
$params.= '&content='.urlencode($RESPONSE)

$response = file_get_contents($baseurl.$params);

// Note:
// If you need to check if the message is really delivered (or at least, taken by Jasmin for delivery)
// you must test for $response value, it must begin with "Success", c.f. HTTP API doc for more details

c.f. HTTP API for more details.

Routing

c.f. MO router manager and MT router manager for routing scenarios.
c.f. The message router for details about routing.

Management CLI overview

jCli is Jasmin’s CLI interface, it is an advanced console to manage and configure everything needed to start messaging
through Jasmin, from users to connectors and message routing management.

jCli is multi-profile configurator where it is possible to create a testing, staging and production profiles to hold
different sets of configurations depending on the desired execution environment.

In order to connect to jCli and start managing Jasmin, the following requirements must be met:

	You need a jCli admin account

	You need to have a connection to jCli’s tcp port

Jasmin management through jCli is done using different modules (users, groups, filters, smpp connectors, http connectors …),
these are detailed in Management CLI Modules, before going to this part, you have to understand how to:

	Configure jCli to change it’s binding host and port, authentication and logging parameters,

	Authenticate to jCli and discover basic commands to navigate through the console,

	Know how to persist to disk the current configuration before restarting or load a
specific configuration profile to run test scenarios for example

Architecture

The Jasmin CLI interface is designed to be a user interactive interface on front of the Perspective brokers provided by Jasmin.

[image: Jasmin CLI architecture]

Jasmin CLI architecture

In the above figure, every Jasmin CLI module (blue boxes) is connected to its perspective broker, and below you find more details
on the Perspective brokers used and the actions they are exposing:

	SMPPClientManagerPB which provides the following actions:

	persist: Persist current configuration to disk

	load: Load configuration from disk

	is_persisted: Used to check if the current configuration is persisted or not

	connector_add: Add a SMPP Client connector

	connector_remove: Remove a SMPP Client connector

	connector_list: List all SMPP Client connectors

	connector_start: Start a SMPP Client connector

	connector_stop: Stop a SMPP Client connector

	connector_stopall: Stop all SMPP Client connectors

	service_status: Return a SMPP Client connector service status (running or not)

	session_state: Return a SMPP Client connector session state (SMPP binding status)

	connector_details: Get all details for a gived SMPP Client connector

	connector_config: Returns a SMPP Client connector configuration

	submit_sm: Send a submit_sm *

	RouterPB which provides the following actions:

	persist: Persist current configuration to disk

	load: Load configuration from disk

	is_persisted: Used to check if the current configuration is persisted or not

	user_add: Add a new user

	user_authenticate: Authenticate username/password with the existent users *

	user_remove: Remove a user

	user_remove_all: Remove all users

	user_get_all: Get all users

	user_update_quota: Update a user quota

	group_add: Add a group

	group_remove: Remove a group

	group_remove_all: Remove all groups

	group_get_all: Get all groups

	mtroute_add: Add a new MT route

	moroute_add: Add a new MO route

	mtroute_remove: Remove a MT route

	moroute_remove: Remove a MO route

	mtroute_flush: Flush MT routes

	moroute_flush: Flush MO routes

	mtroute_get_all: Get all MT routes

	moroute_get_all: Get all MO routes

	mtinterceptor_add: Add a new MT interceptor

	mointerceptor_add: Add a new MO interceptor

	mtinterceptor_remove: Remove a MT interceptor

	mointerceptor_remove: Remove a MO interceptor

	mtinterceptor_flush: Flush MT interceptor

	mointerceptor_flush: Flush MO interceptor

	mtinterceptor_get_all: Get all MT interceptor

	mointerceptor_get_all: Get all MO interceptor

Note

(*): These actions are not exposed through jCli

Hint

SMPPClientManagerPB and RouterPB are available for third party applications to implement specific business processes, there’s a FAQ subject including an example of how an external application can use these Perspective Brokers.

Configuration

The jasmin.cfg file (INI format, located in /etc/jasmin) contains a jcli section where all JCli interface related config elements are:

 1[jcli]
 2bind = 127.0.0.1
 3port = 8990
 4authentication = True
 5admin_username = jcliadmin
 6# MD5 password digest hex encoded
 7admin_password = 79e9b0aa3f3e7c53e916f7ac47439bcb
 8
 9log_level = INFO
10log_file = /var/log/jasmin/jcli.log
11log_format = %(asctime)s %(levelname)-8s %(process)d %(message)s
12log_date_format = %Y-%m-%d %H:%M:%S

[jcli] configuration section

	Element

	Default

	Description

	bind

	127.0.0.1

	jCli will only bind to this specified address.

	port

	8990

	The binding TCP port.

	authentication

	True

	If set to False, anonymous user can connect to jCli and admin user account is no more needed

	admin_username

	jcliadmin

	The admin username

	admin_password

	jclipwd

	The admin MD5 crypted password

	log_*

	
	Python’s logging module configuration.

Warning

Don’t set authentication to False if you’re not sure about what you are doing

First connection & authentication

In order to connect to jCli, initiate a telnet session with the hostname/ip and port of jCli as set in
Configuration:

telnet 127.0.0.1 8990

And depending on whether authentication is set to True or False, you may have to authenticate using
the admin_username and admin_password, here’s an example of an authenticated
connection:

Authentication required.

Username: jcliadmin
Password:
Welcome to Jasmin console
Type help or ? to list commands.

Session ref: 2
jcli :

Once successfully connected, you’ll get a welcome message, your session id (Session ref) and a prompt (jcli :)
where you can start typing your commands and use Management CLI Modules.

Available commands:

Using tabulation will help you discover the available commands:

jcli : [TABULATION]
persist load user group filter mointerceptor mtinterceptor morouter mtrouter smppccm httpccm quit help

Or type help and you’ll get detailed listing of the available commands with comprehensive descriptions:

jcli : help
Available commands:
===================
persist Persist current configuration profile to disk in PROFILE
load Load configuration PROFILE profile from disk
user User management
group Group management
filter Filter management
mointerceptor MO Interceptor management
mtinterceptor MT Interceptor management
morouter MO Router management
mtrouter MT Router management
smppccm SMPP connector management
httpccm HTTP client connector management

Control commands:
=================
quit Disconnect from console
help List available commands with "help" or detailed help with "help cmd".

More detailed help for a specific command can be obtained running help cmd where cmd is the command
you need help for:

jcli : help user
User management
Usage: user [options]

Options:
 -l, --list List all users or a group users when provided with GID
 -a, --add Add user
 -u UID, --update=UID Update user using it's UID
 -r UID, --remove=UID Remove user using it's UID
 -s UID, --show=UID Show user using it's UID

Interactivity:

When running a command you may enter an interactive session, for example, adding a user with user -a will
start an interactive session where you have to indicate the user parameters, the prompt will be changed from
jcli : to > indicating you are in an interactive session:

jcli : user -a
Adding a new User: (ok: save, ko: exit)
> username foo
> password bar
> uid u1
> gid g1
> ok
Successfully added User [u1] to Group [g1]

In the above example, user parameters were username, password, uid and gid, note that there’s no
order in entering these parameters, and you may use a simple TABULATION to get the parameters you have to enter:

...
> [TABULATION]
username password gid uid
...

Profiles and persistence

Everything done using the Jasmin console will be set in runtime memory, and it will remain there until Jasmin is
stopped, that’s where persistence is needed to keep the same configuration when restarting.

Persist

Typing persist command below will persist runtime configuration to disk using the default profile set in Configuration:

jcli : persist
mtrouter configuration persisted (profile:jcli-prod)
smppcc configuration persisted (profile:jcli-prod)
group configuration persisted (profile:jcli-prod)
user configuration persisted (profile:jcli-prod)
httpcc configuration persisted (profile:jcli-prod)
mointerceptor configuration persisted (profile:jcli-prod)
filter configuration persisted (profile:jcli-prod)
mtinterceptor configuration persisted (profile:jcli-prod)
morouter configuration persisted (profile:jcli-prod)

It is possible to persist to a defined profile:

jcli : persist -p testing

Important

On Jasmin startup, jcli-prod profile is automatically loaded, any other profile can only be manually loaded through load -p AnyProfile.

Load

Like persist command, there’s a load command which will loaded a configuration profile from disk, typing load
command below will load the default profil set in Configuration from disk:

jcli : load
mtrouter configuration loaded (profile:jcli-prod)
smppcc configuration loaded (profile:jcli-prod)
group configuration loaded (profile:jcli-prod)
user configuration loaded (profile:jcli-prod)
httpcc configuration loaded (profile:jcli-prod)
mointerceptor configuration loaded (profile:jcli-prod)
filter configuration loaded (profile:jcli-prod)
mtinterceptor configuration loaded (profile:jcli-prod)
morouter configuration loaded (profile:jcli-prod)

It is possible to load to a defined profile:

jcli : load -p testing

Note

When loading a profile, any defined current runtime configuration will lost and replaced by this profile configuration

Management CLI Modules

As shown in the architecture figure Architecture, jCli is mainly composed of management modules interfacing two
Perspective brokers (SMPPClientManagerPB and RouterPB), each module is identified as a manager of a defined scope:

	User management

	Group management

	etc ..

Note

filter and httpccm modules are not interfacing any Perspective broker, they are facilitating
the reuse of created filters and HTTP Client connectors in MO and MT routers, e.g. a HTTP Client connector
may be created once and used many times in MO Routes.

User manager

The User manager module is accessible through the user command and is providing the following features:

user command line options

	Command

	Description

	-l, –list

	List all users or a group users when provided with GID

	-a, –add

	Add user

	-e, –enable

	Enable user

	-d, –disable

	Disable user

	-u UID, –update=UID

	Update user using it’s UID

	-r UID, –remove=UID

	Remove user using it’s UID

	-s UID, –show=UID

	Show user using it’s UID

	–smpp-unbind=UID

	Unbind user from smpp server using it’s UID

	–smpp-ban=UID

	Unbind and ban user from smpp server using it’s UID

A User object is required for:

	SMPP Server API authentication to send a SMS (c.f. Sending SMS-MT)

	HTTP API authentication to send a SMS (c.f. Sending SMS-MT)

	Creating a UserFilter using the filter manager (c.f. Filter manager)

Every User must be a member of a Group, so before adding a new User, there must be at least one Group
available, Groups are identified by GID (Group ID).

When adding a User, the following parameters are required:

	username: A unique username used for authentication

	password

	uid: A unique identifier, can be same as username

	gid: Group Identfier

	mt_messaging_cred (optional): MT Messaging credentials (c.f. User credentials)

Here’s an example of adding a new User to the marketing group:

jcli : user -a
Adding a new User: (ok: save, ko: exit)
> username foo
> password bar
> gid marketing
> uid foo
> ok
Successfully added User [foo] to Group [marketing]

All the above parameters can be displayed after User creation, except the password:

jcli : user -s foo
username foo
mt_messaging_cred defaultvalue src_addr None
mt_messaging_cred quota http_throughput ND
mt_messaging_cred quota balance ND
mt_messaging_cred quota smpps_throughput ND
mt_messaging_cred quota sms_count ND
mt_messaging_cred quota early_percent ND
mt_messaging_cred valuefilter priority ^[0-3]$
mt_messaging_cred valuefilter content .*
mt_messaging_cred valuefilter src_addr .*
mt_messaging_cred valuefilter dst_addr .*
mt_messaging_cred valuefilter validity_period ^\d+$
mt_messaging_cred authorization http_send True
mt_messaging_cred authorization http_dlr_method True
mt_messaging_cred authorization http_balance True
mt_messaging_cred authorization smpps_send True
mt_messaging_cred authorization priority True
mt_messaging_cred authorization http_long_content True
mt_messaging_cred authorization src_addr True
mt_messaging_cred authorization dlr_level True
mt_messaging_cred authorization http_rate True
mt_messaging_cred authorization validity_period True
mt_messaging_cred authorization http_bulk False
mt_messaging_cred authorization hex_content True
uid foo
smpps_cred quota max_bindings ND
smpps_cred authorization bind True
gid marketing

Listing Users will show currently added Users with their UID, GID and Username:

jcli : user -l
#User id Group id Username Balance MT SMS Throughput
#foo 1 foo ND ND ND/ND
Total Users: 1

Note

When listing a disabled user, his User id will be prefixed by !, same thing apply to group.

User credentials

MT Messaging section

As seen above, User have an optional mt_messaging_cred parameter which define a set of sections:

	Authorizations: Privileges to send messages and set some defined parameters,

	Value filters: Restrictions on some parameter values (such as source address),

	Default values: Default parameter values to be set by Jasmin when not manually set by User,

	Quotas: Everything about Billing,

For each section of the above, there’s keys to be defined when adding/updating a user, the example below show how to set a source address value filter, a balance of 44.2, unlimited sms_count and limit SMS throughput in smpp server to 2 messages per second:

jcli : user -a
Adding a new User: (ok: save, ko: exit)
> username foo
> password bar
> gid marketing
> uid foo
> mt_messaging_cred valuefilter src_addr ^JASMIN$
> mt_messaging_cred quota balance 44.2
> mt_messaging_cred quota sms_count none
> mt_messaging_cred quota smpps_throughput 2
> ok
Successfully added User [foo] to Group [marketing]

Note

Setting none value to a user quota will set it as unlimited quota.

In the below tables, you can find exhaustive list of keys for each mt_messaging_cred section:

authorization section keys

	Key

	Default

	Description

	http_send

	True

	Privilege to send SMS through Sending SMS-MT (default is True)

	http_balance

	True

	Privilege to check balance through Checking account balance (default is True)

	http_rate

	True

	Privilege to check a message rate through Checking rate price (default is True)

	http_bulk

	False

	Privilege to send bulks through http api (Deprecated and will be removed)

	smpps_send

	True

	Privilege to send SMS through SMPP Server API (default is True)

	http_long_content

	True

	Privilege to send long content SMS through Sending SMS-MT (default is True)

	dlr_level

	True

	Privilege to set dlr-level parameter (default is True)

	http_dlr_method

	True

	Privilege to set dlr-method HTTP parameter (default is True)

	src_addr

	True

	Privilege to define source address of SMS-MT (default is True)

	priority

	True

	Privilege to define priority of SMS-MT (default is True)

	validity_period

	True

	Privilege to define validity_period of SMS-MT (default is True)

	hex_content

	True

	Privilege to send binary message using the hex-content parameter (default is NOT SET)

Note

Authorizations keys prefixed by http_ or smpps_ are only applicable for their respective channels.

valuefilter section keys

	Key

	Default

	Description

	src_addr

	.*

	Regex pattern to validate source address of SMS-MT

	dst_addr

	.*

	Regex pattern to validate destination address of SMS-MT

	content

	.*

	Regex pattern to validate content of SMS-MT

	priority

	^[0-3]$

	Regex pattern to validate priority of SMS-MT

	validity_period

	^d+$

	Regex pattern to validate validity_period of SMS-MT

defaultvalue section keys

	Key

	Default

	Description

	src_addr

	None

	Default source address of SMS-MT

quota section keys

	Key

	Default

	Description

	balance

	ND

	c.f. 1. Balance quota

	sms_count

	ND

	c.f. 2. sms_count quota

	early_percent

	ND

	c.f. Asynchronous billing

	http_throughput

	ND

	Max. number of messages per second to accept through HTTP API

	smpps_throughput

	ND

	Max. number of messages per second to accept through SMPP Server

Note

It is possible to increment a quota by indicating a sign, ex: +10 will increment a quota value by 10, -22.4 will decrease a quota value by 22.4.

SMPP Server section

User have an other optional smpps_cred parameter which define a specialized set of sections for defining his credentials for using the SMPP Server API:

	Authorizations: Privileges to bind,

	Quotas: Maximum bound connections at a time (multi binding),

For each section of the above, there’s keys to be defined when adding/updating a user, the example below show how to authorize binding and set max_bindings to 2:

jcli : user -a
Adding a new User: (ok: save, ko: exit)
> username foo
> password bar
> gid marketing
> uid foo
> smpps_cred authorization bind yes
> smpps_cred quota max_bindings 2
> ok
Successfully added User [foo] to Group [marketing]

In the below tables, you can find exhaustive list of keys for each smpps_cred section:

authorization section keys

	Key

	Default

	Description

	bind

	True

	Privilege to bind to SMPP Server API

quota section keys

	Key

	Default

	Description

	max_bindings

	ND

	Maximum bound connections at a time (multi binding)

Note

It is possible to increment a quota by indicating a sign, ex: +10 will increment a quota value by 10, -2 will decrease a quota value by 2.

Group manager

The Group manager module is accessible through the group command and is providing the following features:

group command line options

	Command

	Description

	-l, –list

	List groups

	-a, –add

	Add group

	-e, –enable

	Enable group

	-d, –disable

	Disable group

	-r GID, –remove=GID

	Remove group using it’s GID

A Group object is required for:

	Creating a User using the user manager (c.f. User manager)

	Creating a GroupFilter using the filter manager (c.f. Filter manager)

When adding a Group, only one parameter is required:

	gid: Group Identfier

Here’s an example of adding a new Group:

jcli : group -a
Adding a new Group: (ok: save, ko: exit)
> gid marketing
> ok
Successfully added Group [marketing]

Listing Groups will show currently added Groups with their GID:

jcli : group -l
#Group id
#marketing
Total Groups: 1

Note

When listing a disabled group, its group id will be prefixed by !.

MO router manager

The MO Router manager module is accessible through the morouter command and is providing the following features:

morouter command line options

	Command

	Description

	-l, –list

	List MO routes

	-a, –add

	Add a new MO route

	-r ORDER, –remove=ORDER

	Remove MO route using it’s ORDER

	-s ORDER, –show=ORDER

	Show MO route using it’s ORDER

	-f, –flush

	Flush MO routing table

Note

MO Route is used to route inbound messages (SMS MO) through two possible channels: http and smpps (SMPP Server).

MO Router helps managing Jasmin’s MORoutingTable, which is responsible of providing routes to received
SMS MO, here are the basics of Jasmin MO routing mechanism:

	MORoutingTable holds ordered MORoute objects (each MORoute has a unique order)

	A MORoute is composed of:

	Filters: One or many filters (c.f. Filter manager)

	Connector: One connector (can be many in some situations)

	There’s many objects inheriting MORoute to provide flexible ways to route messages:

	DefaultRoute: A route without a filter, this one can only set with the lowest order to be a
default/fallback route

	StaticMORoute: A basic route with Filters and one Connector

	RandomRoundrobinMORoute: A route with Filters and many Connectors, will return a random
Connector if its Filters are matched, can be used as a load balancer route

	FailoverMORoute: A route with Filters and many Connectors, will return an available (connected)
Connector if its Filters are matched

	When a SMS MO is received, Jasmin will ask for the right MORoute to consider, all routes are checked
in descendant order for their respective Filters (when a MORoute have many filters, they are checked
with an AND boolean operator)

	When a MORoute is considered (its Filters are matching a received SMS MO), Jasmin will use
its Connector to send the SMS MO.

Check The message router for more details about Jasmin’s routing.

When adding a MO Route, the following parameters are required:

	type: One of the supported MO Routes: DefaultRoute, StaticMORoute, RandomRoundrobinMORoute

	order: MO Route order

When choosing the MO Route type, additional parameters may be added to the above required parameters.

Here’s an example of adding a DefaultRoute to a HTTP Client Connector (http_default):

jcli : morouter -a
Adding a new MO Route: (ok: save, ko: exit)
> type DefaultRoute
jasmin.routing.Routes.DefaultRoute arguments:
connector
> connector http(http_default)
> ok
Successfully added MORoute [DefaultRoute] with order:0

Note

You don’t have to set order parameter when the MO Route type is DefaultRoute, it will be automatically set to 0

Here’s an example of adding a StaticMORoute to a HTTP Client Connector (http_1):

jcli : morouter -a
Adding a new MO Route: (ok: save, ko: exit)
> type StaticMORoute
jasmin.routing.Routes.StaticMORoute arguments:
filters, connector
> order 10
> filters filter_1
> connector http(http_1)
> ok
Successfully added MORoute [StaticMORoute] with order:10

Here’s an example of adding a StaticMORoute to a SMPP Server user (user_1):

jcli : morouter -a
Adding a new MO Route: (ok: save, ko: exit)
> type StaticMORoute
jasmin.routing.Routes.StaticMORoute arguments:
filters, connector
> order 15
> filters filter_2
> connector smpps(user_1)
> ok
Successfully added MORoute [StaticMORoute] with order:15

Note

When routing to a smpps connector like the above example the user_1 designates the username of the concerned user, if he’s already bound to Jasmin’s SMPP Server API routed messages will be delivered to him, if not, queuing will take care of delivery.

Here’s an example of adding a RandomRoundrobinMORoute to two HTTP Client Connectors (http_2 and http_3):

jcli : morouter -a
Adding a new MO Route: (ok: save, ko: exit)
> type RandomRoundrobinMORoute
jasmin.routing.Routes.RandomRoundrobinMORoute arguments:
filters, connectors
> filters filter_3;filter_1
> connectors http(http_2);http(http_3)
> order 20
> ok
Successfully added MORoute [RandomRoundrobinMORoute] with order:20

Note

It is possible to use a RoundRobinMORoute with a mix of connectors, example: connectors smpps(user_1);http(http_1);http(http_3).

Here’s an example of adding a FailoverMORoute to two HTTP Client Connectors (http_4 and http_5):

jcli : morouter -a
Adding a new MO Route: (ok: save, ko: exit)
> type FailoverMORoute
jasmin.routing.Routes.FailoverMORoute arguments:
filters, connectors
> filters filter_4
> connectors http(http_4);http(http_5)
> order 30
> ok
Successfully added MORoute [FailoverMORoute] with order:20

Note

It is not possible to use a FailoverMORoute with a mix of connectors, example: connectors smpps(user_1);http(http_1);http(http_3).

Once the above MO Routes are added to MORoutingTable, it is possible to list these routes:

jcli : morouter -l
#Order Type Connector ID(s) Filter(s)
#30 FailoverMORoute http(http_4), http(http_5) <T>, <T>
#20 RandomRoundrobinMORoute http(http_2), http(http_3) <T>, <T>
#15 StaticMORoute smpps(user_1) <T>
#10 StaticMORoute http(http_1) <T>
#0 DefaultRoute http(http_default)
Total MO Routes: 3

Note

Filters and Connectors were created before creating these routes, please check Filter manager and HTTP Client connector manager for further details

It is possible to obtain more information of a defined route by typing moroute -s <order>:

jcli : morouter -s 20
RandomRoundrobinMORoute to 2 connectors:
 - http(http_2)
 - http(http_3)

jcli : morouter -s 10
StaticMORoute to http(http_1)

jcli : morouter -s 0
DefaultRoute to http(http_default)

More control commands:

	morouter -r <order>: Remove route at defined order

	morouter -f: Flush MORoutingTable (unrecoverable)

MT router manager

The MT Router manager module is accessible through the mtrouter command and is providing the following features:

mtrouter command line options

	Command

	Description

	-l, –list

	List MT routes

	-a, –add

	Add a new MT route

	-r ORDER, –remove=ORDER

	Remove MT route using it’s ORDER

	-s ORDER, –show=ORDER

	Show MT route using it’s ORDER

	-f, –flush

	Flush MT routing table

Note

MT Route is used to route outbound messages (SMS MT) through one channel: smppc (SMPP Client).

MT Router helps managing Jasmin’s MTRoutingTable, which is responsible of providing routes to outgoing SMS MT,
here are the basics of Jasmin MT routing mechanism:

	MTRoutingTable holds ordered MTRoute objects (each MTRoute has a unique order)

	A MTRoute is composed of:

	Filters: One or many filters (c.f. Filter manager)

	Connector: One connector (can be many in some situations)

	Rate: For billing purpose, the rate of sending one message through this route; it can be zero
to mark the route as FREE (NOT RATED) (c.f. Billing)

	There’s many objects inheriting MTRoute to provide flexible ways to route messages:

	DefaultRoute: A route without a filter, this one can only set with the lowest order to be a
default/fallback route

	StaticMTRoute: A basic route with Filters and one Connector

	RandomRoundrobinMTRoute: A route with Filters and many Connectors, will return a random
Connector if its Filters are matching, can be used as a load balancer route

	FailoverMTRoute: A route with Filters and many Connectors, will return an available (connected)
Connector if its Filters are matched

	When a SMS MT is to be sent, Jasmin will ask for the right MTRoute to consider, all routes are checked
in descendant order for their respective Filters (when a MTRoute have many filters, they are checked
with an AND boolean operator)

	When a MTRoute is considered (its Filters are matching an outgoing SMS MT), Jasmin will use
its Connector to send the SMS MT.

Check The message router for more details about Jasmin’s routing.

When adding a MT Route, the following parameters are required:

	type: One of the supported MT Routes: DefaultRoute, StaticMTRoute, RandomRoundrobinMTRoute

	order: MO Route order

	rate: The route rate, can be zero

When choosing the MT Route type, additional parameters may be added to the above required parameters.

Here’s an example of adding a DefaultRoute to a SMPP Client Connector (smppcc_default):

jcli : mtrouter -a
Adding a new MT Route: (ok: save, ko: exit)
> type DefaultRoute
jasmin.routing.Routes.DefaultRoute arguments:
connector
> connector smppc(smppcc_default)
> rate 0.0
> ok
Successfully added MTRoute [DefaultRoute] with order:0

Note

You don’t have to set order parameter when the MT Route type is DefaultRoute, it will be automatically
set to 0

Here’s an example of adding a StaticMTRoute to a SMPP Client Connector (smppcc_1):

jcli : mtrouter -a
Adding a new MT Route: (ok: save, ko: exit)
> type StaticMTRoute
jasmin.routing.Routes.StaticMTRoute arguments:
filters, connector
> filters filter_1;filter_2
> order 10
> connector smppc(smppcc_1)
> rate 0.0
> ok
Successfully added MTRoute [StaticMTRoute] with order:10

Here’s an example of adding a RandomRoundrobinMTRoute to two SMPP Client Connectors (smppcc_2 and smppcc_3):

jcli : mtrouter -a
Adding a new MT Route: (ok: save, ko: exit)
> order 20
> type RandomRoundrobinMTRoute
jasmin.routing.Routes.RandomRoundrobinMTRoute arguments:
filters, connectors
> filters filter_3
> connectors smppc(smppcc_2);smppc(smppcc_3)
> rate 0.0
> ok
Successfully added MTRoute [RandomRoundrobinMTRoute] with order:20

Here’s an example of adding a FailoverMTRoute to two SMPP Client Connectors (smppcc_4 and smppcc_5):

jcli : mtrouter -a
Adding a new MT Route: (ok: save, ko: exit)
> order 30
> type FailoverMTRoute
jasmin.routing.Routes.FailoverMTRoute arguments:
filters, connectors
> filters filter_4
> connectors smppc(smppcc_4);smppc(smppcc_5)
> rate 0.0
> ok
Successfully added MTRoute [FailoverMTRoute] with order:20

Once the above MT Routes are added to MTRoutingTable, it is possible to list these routes:

jcli : mtrouter -l
#Order Type Rate Connector ID(s) Filter(s)
#20 FailoverMTRoute 0 (!) smppc(smppcc_3), smppc(smppcc_4) <T>
#20 RandomRoundrobinMTRoute 0 (!) smppc(smppcc_2), smppc(smppcc_3) <T>
#10 StaticMTRoute 0 (!) smppc(smppcc_1) <T>, <T>
#0 DefaultRoute 0 (!) smppc(smppcc_default)
Total MT Routes: 3

Note

Filters and Connectors were created before creating these routes, please check Filter manager and
HTTP Client connector manager for further details

It is possible to obtain more information of a defined route by typing mtroute -s <order>:

jcli : mtrouter -s 20
RandomRoundrobinMTRoute to 2 connectors:
 - smppc(smppcc_2)
 - smppc(smppcc_3)
NOT RATED

jcli : mtrouter -s 10
StaticMTRoute to smppc(smppcc_1) NOT RATED

jcli : mtrouter -s 0
DefaultRoute to smppc(smppcc_default) NOT RATED

More control commands:

	mtrouter -r <order>: Remove route at defined order

	mtrouter -f: Flush MTRoutingTable (unrecoverable)

MO interceptor manager

The MO Interceptor manager module is accessible through the mointerceptor command and is providing the following features:

mointerceptor command line options

	Command

	Description

	-l, –list

	List MO interceptors

	-a, –add

	Add a new MO interceptors

	-r ORDER, –remove=ORDER

	Remove MO interceptor using it’s ORDER

	-s ORDER, –show=ORDER

	Show MO interceptor using it’s ORDER

	-f, –flush

	Flush MO interception table

Note

MO Interceptor is used to hand inbound messages (SMS MO) to a user defined script, check
Interception for more details.

MO Interceptor helps managing Jasmin’s MOInterceptionTable, which is responsible of intercepting SMS MO before
routing is made, here are the basics of Jasmin MO interception mechanism:

	MOInterceptionTable holds ordered MOInterceptor objects (each MOInterceptor has a unique order)

	A MOInterceptor is composed of:

	Filters: One or many filters (c.f. Filter manager)

	Script: Path to python script

	There’s many objects inheriting MOInterceptor to provide flexible ways to route messages:

	DefaultInterceptor: An interceptor without a filter, this one can only set with the lowest order to be a
default/fallback interceptor

	StaticMOInterceptor: A basic interceptor with Filters and one Script

	When a SMS MO is received, Jasmin will ask for the right MOInterceptor to consider, all interceptors are checked
in descendant order for their respective Filters (when a MOInterceptor have many filters, they are checked
with an AND boolean operator)

	When a MOInterceptor is considered (its Filters are matching a received SMS MO), Jasmin will call
its Script with the Routable argument.

Check Interception for more details about Jasmin’s interceptor.

When adding a MO Interceptor, the following parameters are required:

	type: One of the supported MO Interceptors: DefaultInterceptor, StaticMOInterceptor

	order: MO Interceptor order

When choosing the MO Interceptor type, additional parameters may be added to the above required parameters.

Here’s an example of adding a DefaultInterceptor to a python script:

jcli : mointerceptor -a
Adding a new MO Interceptor: (ok: save, ko: exit)
> type DefaultInterceptor
<class 'jasmin.routing.Interceptors.DefaultInterceptor'> arguments:
script
> script python3(/opt/jasmin-scripts/interception/mo-interceptor.py)
> ok
Successfully added MOInterceptor [DefaultInterceptor] with order:0

Note

As of now, only python3 script is permitted.

Note

The path to the script can be any of the fallowing:

	python3(/path/to/script.py) or python3(file://path/to/script.py): The path must be absolute, relative path is not supported

	python3(https://example.com/path/to/script.py): The script is a remote python3 script. The script will be
downloaded and copied to Jasmin core. Accepts http, https, and ftp protocols.

Note

Pay attention that the given script is copied to Jasmin core, do not expect Jasmin to refresh the script
code when you update it, you’ll need to redefine the mointerceptor rule again so Jasmin will refresh the script.

Note

You don’t have to set order parameter when the MO Interceptor type is DefaultInterceptor,
it will be automatically set to 0

Here’s an example of adding a StaticMOInterceptor to a python script:

jcli : mointerceptor -a
Adding a new MO Interceptor: (ok: save, ko: exit)
> type StaticMOInterceptor
<class 'jasmin.routing.Interceptors.StaticMOInterceptor'> arguments:
filters, script
> order 10
> filters filter_1
> script python3(/opt/jasmin-scripts/interception/mo-interceptor.py)
> ok
Successfully added MOInterceptor [StaticMOInterceptor] with order:10

Once the above MO Interceptors are added to MOInterceptionTable, it is possible to list these interceptors:

jcli : mointerceptor -l
#Order Type Script Filter(s)
#10 StaticMOInterceptor <MOIS (pyCode= ..)> <T>
#0 DefaultInterceptor <MOIS (pyCode= ..)>
Total MO Interceptors: 2

Note

Filters were created before creating these interceptors, please check Filter manager for further details

It is possible to obtain more information of a defined interceptor by typing mointerceptor -s <order>:

jcli : mointerceptor -s 10
StaticMOInterceptor/<MOIS (pyCode= ..)>

jcli : mointerceptor -s 0
DefaultInterceptor/<MOIS (pyCode= ..)>

More control commands:

	mointerceptor -r <order>: Remove interceptor at defined order

	mointerceptor -f: Flush MOInterceptionTable (unrecoverable)

MT interceptor manager

The MT Interceptor manager module is accessible through the mtinterceptor command and is providing the following features:

mtinterceptor command line options

	Command

	Description

	-l, –list

	List MT interceptors

	-a, –add

	Add a new MT interceptors

	-r ORDER, –remove=ORDER

	Remove MT interceptor using it’s ORDER

	-s ORDER, –show=ORDER

	Show MT interceptor using it’s ORDER

	-f, –flush

	Flush MT interception table

Note

MT Interceptor is used to hand outbound messages (SMS MT) to a user defined script, check
Interception for more details.

MT Interceptor helps managing Jasmin’s MTInterceptionTable, which is responsible of intercepting SMS MT before
routing is made, here are the basics of Jasmin MT interception mechanism:

	MTInterceptionTable holds ordered MTInterceptor objects (each MTInterceptor has a unique order)

	A MTInterceptor is composed of:

	Filters: One or many filters (c.f. Filter manager)

	Script: Path to python script

	There’s many objects inheriting MTInterceptor to provide flexible ways to route messages:

	DefaultInterceptor: An interceptor without a filter, this one can only set with the lowest order to be a
default/fallback interceptor

	StaticMTInterceptor: A basic interceptor with Filters and one Script

	When a SMS MT is received, Jasmin will ask for the right MTInterceptor to consider, all interceptors are checked
in descendant order for their respective Filters (when a MTInterceptor have many filters, they are checked
with an AND boolean operator)

	When a MTInterceptor is considered (its Filters are matching a received SMS MT), Jasmin will call
its Script with the Routable argument.

Check Interception for more details about Jasmin’s interceptor.

When adding a MT Interceptor, the following parameters are required:

	type: One of the supported MT Interceptors: DefaultInterceptor, StaticMTInterceptor

	order: MT Interceptor order

When choosing the MT Interceptor type, additional parameters may be added to the above required parameters.

Here’s an example of adding a DefaultInterceptor to a python script:

jcli : mtinterceptor -a
Adding a new MT Interceptor: (ok: save, ko: exit)
> type DefaultInterceptor
<class 'jasmin.routing.Interceptors.DefaultInterceptor'> arguments:
script
> script python3(/opt/jasmin-scripts/interception/mt-interceptor.py)
> ok
Successfully added MTInterceptor [DefaultInterceptor] with order:0

Note

As of now, only python3 script is permitted.

Note

Pay attention that the given script is copied to Jasmin core, do not expect Jasmin to refresh the script
code when you update it, you’ll need to redefine the mtinterceptor rule again so Jasmin will refresh the script.

Note

You don’t have to set order parameter when the MT Interceptor type is DefaultInterceptor,
it will be automatically set to 0

Here’s an example of adding a StaticMTInterceptor to a python script:

jcli : mtinterceptor -a
Adding a new MT Interceptor: (ok: save, ko: exit)
> type StaticMTInterceptor
<class 'jasmin.routing.Interceptors.StaticMTInterceptor'> arguments:
filters, script
> order 10
> filters filter_1
> script python3(/opt/jasmin-scripts/interception/mt-interceptor.py)
> ok
Successfully added MTInterceptor [StaticMTInterceptor] with order:10

Once the above MT Interceptors are added to MTInterceptionTable, it is possible to list these interceptors:

jcli : mtinterceptor -l
#Order Type Script Filter(s)
#10 StaticMTInterceptor <MTIS (pyCode= ..)> <T>
#0 DefaultInterceptor <MTIS (pyCode= ..)>
Total MT Interceptors: 2

Note

Filters were created before creating these interceptors, please check Filter manager for further details

It is possible to obtain more information of a defined interceptor by typing mtinterceptor -s <order>:

jcli : mtinterceptor -s 10
StaticMTInterceptor/<MTIS (pyCode= ..)>

jcli : mtinterceptor -s 0
DefaultInterceptor/<MTIS (pyCode= ..)>

More control commands:

	mtinterceptor -r <order>: Remove interceptor at defined order

	mtinterceptor -f: Flush MTInterceptionTable (unrecoverable)

SMPP Client connector manager

The SMPP Client connector manager module is accessible through the smppccm command and is providing the following features:

smppccm command line options

	Command

	Description

	-l, –list

	List SMPP connectors

	-a, –add

	Add SMPP connector

	-u CID, –update=CID

	Update SMPP connector configuration using it’s CID

	-r CID, –remove=CID

	Remove SMPP connector using it’s CID

	-s CID, –show=CID

	Show SMPP connector using it’s CID

	-1 CID, –start=CID

	Start SMPP connector using it’s CID

	-0 CID, –stop=CID

	Stop SMPP connector using it’s CID

A SMPP Client connector is used to send/receive SMS through SMPP v3.4 protocol, it is directly connected to MO and MT routers to
provide end-to-end message delivery.

Adding a new SMPP Client connector requires knowledge of the parameters detailed in the listing below:

SMPP Client connector parameters

	Parameter

	Description

	Default

	cid

	Connector ID (must be unique)

	

	logfile

	
	/var/log/jasmin/default-<cid>.log

	logrotate

	When to rotate the log file, possible values: S=Seconds, M=Minutes, H=Hours, D=Days, W0-W6=Weekday (0=Monday) and midnight=Roll over at midnight

	midnight

	loglevel

	Logging numeric level: 10=DEBUG, 20=INFO, 30=WARNING, 40=ERROR, 50=CRITICCAL

	20

	logprivacy

	Don’t log message contents if True

	False

	host

	Server that runs SMSC

	127.0.0.1

	port

	The port number for the connection to the SMSC.

	2775

	ssl

	Activate ssl connection

	no

	username

	
	smppclient

	password

	
	password

	bind

	Bind type: transceiver, receiver or transmitter

	transceiver

	bind_to

	Timeout for response to bind request

	30

	trx_to

	Maximum time lapse allowed between transactions, after which, the connection is considered as inactive and will reconnect

	300

	res_to

	Timeout for responses to any request PDU

	60

	pdu_red_to

	Timeout for reading a single PDU, this is the maximum lapse of time between receiving PDU’s header and its complete read, if the PDU reading timed out, the connection is considered as ‘corrupt’ and will reconnect

	10

	con_loss_retry

	Reconnect on connection loss ? (yes, no)

	yes

	con_loss_delay

	Reconnect delay on connection loss (seconds)

	10

	con_fail_retry

	Reconnect on connection failure ? (yes, no)

	yes

	con_fail_delay

	Reconnect delay on connection failure (seconds)

	10

	src_addr

	Default source adress of each SMS-MT if not set while sending it, can be numeric or alphanumeric, when not defined it will take SMSC default

	Not defined

	src_ton

	Source address TON setting for the link: 0=Unknown, 1=International, 2=National, 3=Network specific, 4=Subscriber number, 5=Alphanumeric, 6=Abbreviated

	2

	src_npi

	Source address NPI setting for the link: 0=Unknown, 1=ISDN, 3=Data, 4=Telex, 6=Land mobile, 8=National, 9=Private, 10=Ermes, 14=Internet, 18=WAP Client ID

	1

	dst_ton

	Destination address TON setting for the link: 0=Unknown, 1=International, 2=National, 3=Network specific, 4=Subscriber number, 5=Alphanumeric, 6=Abbreviated

	1

	dst_npi

	Destination address NPI setting for the link: 0=Unknown, 1=ISDN, 3=Data, 4=Telex, 6=Land mobile, 8=National, 9=Private, 10=Ermes, 14=Internet, 18=WAP Client ID

	1

	bind_ton

	Bind address TON setting for the link: 0=Unknown, 1=International, 2=National, 3=Network specific, 4=Subscriber number, 5=Alphanumeric, 6=Abbreviated

	0

	bind_npi

	Bind address NPI setting for the link: 0=Unknown, 1=ISDN, 3=Data, 4=Telex, 6=Land mobile, 8=National, 9=Private, 10=Ermes, 14=Internet, 18=WAP Client ID

	1

	validity

	Default validity period of each SMS-MT if not set while sending it, when not defined it will take SMSC default (seconds)

	Not defined

	priority

	SMS-MT default priority if not set while sending it: 0, 1, 2 or 3

	0

	requeue_delay

	Delay to be considered when requeuing a rejected message

	120

	addr_range

	Indicates which MS’s can send messages to this connector, seems to be an informative value

	Not defined

	systype

	The system_type parameter is used to categorize the type of ESME that is binding to the SMSC. Examples include “VMS” (voice mail system) and “OTA” (over-the-air activation system).

	Not defined

	dlr_expiry

	When a SMS-MT is not acked, it will remain waiting in memory for dlr_expiry seconds, after this period, any received ACK will be ignored

	86400

	submit_throughput

	Active SMS-MT throttling in MPS (Messages per second), set to 0 (zero) for unlimited throughput

	1

	proto_id

	Used to indicate protocol id in SMS-MT and SMS-MO

	Not defined

	coding

	Default coding of each SMS-MT if not set while sending it: 0=SMSC Default, 1=IA5 ASCII, 2=Octet unspecified, 3=Latin1, 4=Octet unspecified common, 5=JIS, 6=Cyrillic, 7=ISO-8859-8, 8=UCS2, 9=Pictogram, 10=ISO-2022-JP, 13=Extended Kanji Jis, 14=KS C 5601

	0

	elink_interval

	Enquire link interval (seconds)

	30

	def_msg_id

	Specifies the SMSC index of a pre-defined (‘canned’) message.

	0

	ripf

	Replace if present flag: 0=Do not replace, 1=Replace

	0

	dlr_msgid

	Indicates how to read msg id when receiving a receipt: 0=msg id is identical in submit_sm_resp and deliver_sm, 1=submit_sm_resp msg-id is in hexadecimal base, deliver_sm msg-id is in decimal base, 2=submit_sm_resp msg-id is in decimal base, deliver_sm msg-id is in hexadecimal base.

	0

Note

When adding a SMPP Client connector, only it’s cid is required, all the other parameters will
be set to their respective defaults.

Note

Connector restart is required only when changing the following parameters: host, port, username,
password, systemType, logfile, loglevel; any other change is applied without requiring connector
to be restarted.

Here’s an example of adding a new transmitter SMPP Client connector with cid=Demo:

jcli : smppccm -a
Adding a new connector: (ok: save, ko: exit)
> cid Demo
> bind transmitter
> ok
Successfully added connector [Demo]

All the above parameters can be displayed after connector creation:

jcli : smppccm -s Demo
ripf 0
con_fail_delay 10
dlr_expiry 86400
coding 0
submit_throughput 1
elink_interval 10
bind_to 30
port 2775
con_fail_retry yes
password password
src_addr None
bind_npi 1
addr_range None
dst_ton 1
res_to 60
def_msg_id 0
priority 0
con_loss_retry yes
username smppclient
dst_npi 1
validity None
requeue_delay 120
host 127.0.0.1
src_npi 1
trx_to 300
logfile /var/log/jasmin/default-Demo.log
systype
cid Demo
loglevel 20
bind transmitter
proto_id None
con_loss_delay 10
bind_ton 0
pdu_red_to 10
src_ton 2

Note

From the example above, you can see that showing a connector details will return all it’s parameters
even those you did not enter while creating/updating the connector, they will take their respective
default values as explained in SMPP Client connector parameters

Listing connectors will show currently added SMPP Client connectors with their CID, Service/Session state and
start/stop counters:

jcli : smppccm -l
#Connector id Service Session Starts Stops
#888 stopped None 0 0
#Demo stopped None 0 0
Total connectors: 2

Updating an existent connector is the same as creating a new one, simply type smppccm -u <cid> where cid
is the connector id you want to update, you’ll run into a new interactive session to enter the parameters you
want to update (c.f. SMPP Client connector parameters).

Here’s an example of updating SMPP Client connector’s host:

jcli : smppccm -u Demo
Updating connector id [Demo]: (ok: save, ko: exit)
> host 10.10.1.2
> ok
Successfully updated connector [Demo]

More control commands:

	smppccm -1 <cid>: Start connector and try to connect

	smppccm -0 <cid>: Stop connector and disconnect

	smppccm -r <cid>: Remove connector (unrecoverable)

Filter manager

The Filter manager module is accessible through the filter command and is providing the following features:

filter command line options

	Command

	Description

	-l, –list

	List filters

	-a, –add

	Add filter

	-r FID, –remove=FID

	Remove filter using it’s FID

	-s FID, –show=FID

	Show filter using it’s FID

Filters are used by MO/MT routers to help decide on which route a message must be delivered, the following
flowchart provides details of the routing process:

[image: MO and MT routing process flow]

Routing process flow

Jasmin provides many Filters offering advanced flexibilities to message routing:

Jasmin Filters

	Name

	Routes

	Description

	TransparentFilter

	All

	This filter will always match any message criteria

	ConnectorFilter

	MO

	Will match the source connector of a message

	UserFilter

	MT

	Will match the owner of a MT message

	GroupFilter

	MT

	Will match the owner’s group of a MT message

	SourceAddrFilter

	All

	Will match the source address of a MO message

	DestinationAddrFilter

	All

	Will match the destination address of a MT message

	ShortMessageFilter

	All

	Will match the content of a message

	DateIntervalFilter

	All

	Will match the date of a message

	TimeIntervalFilter

	All

	Will match the time of a message

	TagFilter

	All

	Will check if message has a defined tag

	EvalPyFilter

	All

	Will pass the message to a third party python script for user-defined filtering

Check The message router for more details about Jasmin’s routing.

When adding a Filter, the following parameters are required:

	type: One of the supported Filters: TransparentFilter, ConnectorFilter, UserFilter, GroupFilter, SourceAddrFilter,
DestinationAddrFilter, ShortMessageFilter, DateIntervalFilter, TimeIntervalFilter, TagFilter, EvalPyFilter

	fid: Filter id (must be unique)

When choosing the Filter type, additional parameters may be added to the above required parameters:

Filters parameters

	Name

	Example

	Parameters

	TransparentFilter

	
	No parameters are required

	ConnectorFilter

	smpp-01

	cid of the connector to match

	UserFilter

	bobo

	uid of the user to match

	GroupFilter

	partners

	gid of the group to match

	SourceAddrFilter

	^20d+

	source_addr: Regular expression to match source address

	DestinationAddrFilter

	^85111$

	destination_addr: Regular expression to match destination address

	ShortMessageFilter

	^hello.*$

	short_message: Regular expression to match message content

	DateIntervalFilter

	2014-09-18;2014-09-28

	dateInterval: Two dates separated by ; (date format is YYYY-MM-DD)

	TimeIntervalFilter

	08:00:00;18:00:00

	timeInterval: Two timestamps separated by ; (timestamp format is HH:MM:SS)

	TagFilter

	32401

	tag: numeric tag to match in message

	EvalPyFilter

	/root/thirdparty.py

	pyCode: Path to a python script, (External business logic for more details)

Here’s an example of adding a TransparentFilter

jcli : filter -a
Adding a new Filter: (ok: save, ko: exit)
type fid
> type transparentfilter
> fid TF
> ok
Successfully added Filter [TransparentFilter] with fid:TF

Here’s an example of adding a SourceAddrFilter

jcli : filter -a
Adding a new Filter: (ok: save, ko: exit)
> type sourceaddrfilter
jasmin.routing.Filters.SourceAddrFilter arguments:
source_addr
> source_addr ^20\d+
> ok
You must set these options before saving: type, fid, source_addr
> fid From20*
> ok
Successfully added Filter [SourceAddrFilter] with fid:From20*

Here’s an example of adding a TimeIntervalFilter

jcli : filter -a
Adding a new Filter: (ok: save, ko: exit)
> fid WorkingHours
> type timeintervalfilter
jasmin.routing.Filters.TimeIntervalFilter arguments:
timeInterval
> timeInterval 08:00:00;18:00:00
> ok
Successfully added Filter [TimeIntervalFilter] with fid:WorkingHours

It is possible to list filters with:

jcli : filter -l
#Filter id Type Routes Description
#StartWithHello ShortMessageFilter MO MT <ShortMessageFilter (msg=^hello.*$)>
#ExternalPy EvalPyFilter MO MT <EvalPyFilter (pyCode= ..)>
#To85111 DestinationAddrFilter MO MT <DestinationAddrFilter (dst_addr=^85111$)>
#September2014 DateIntervalFilter MO MT <DateIntervalFilter (2014-09-01,2014-09-30)>
#WorkingHours TimeIntervalFilter MO MT <TimeIntervalFilter (08:00:00,18:00:00)>
#TF TransparentFilter MO MT <TransparentFilter>
#TG-Spain-Vodacom TagFilter MO MT <TG (tag=21401)>
#From20* SourceAddrFilter MO <SourceAddrFilter (src_addr=^20\d+)>
Total Filters: 7

It is possible to obtain more information of a specific filter by typing filter -s <fid>:

jcli : filter -s September2014
DateIntervalFilter:
Left border = 2014-09-01
Right border = 2014-09-30

More control commands:

	filter -r <fid>: Remove filter

External business logic

In addition to predefined filters listed above (Filter manager), it is possible to extend
filtering with external scripts written in Python using the EvalPyFilter.

Here’s a very simple example where an EvalPyFilter is matching the connector cid of a message:

First, write an external python script:

File @ /opt/jasmin-scripts/routing/abc-connector.py
if routable.connector.cid == 'abc':
 result = True
else:
 result = False

Second, create an EvalPyFilter with the python script:

jcli : filter -a
Adding a new Filter: (ok: save, ko: exit)
> type EvalPyFilter
jasmin.routing.Filters.EvalPyFilter arguments:
pyCode
> pyCode /opt/jasmin-scripts/routing/abc-connector.py
> fid SimpleThirdParty
> ok
Successfully added Filter [EvalPyFilter] with fid:SimpleThirdParty

This example will provide an EvalPyFilter (SimpleThirdParty) that will match any message coming from
the connector with cid = abc.

Using EvalPyFilter is as simple as the shown example, when the python script is called it will get the
following global variables set:

	routable: one of the jasmin.routing.Routables.Routable inheriters (Routable for more details)

	result: (default to False) It will be read by Jasmin router at the end of the script execution to check
if the filter is matching the message passed through the routable variable, matched=True / unmatched=False

Note

It is possible to check for any parameter of the SMPP PDU: TON, NPI, PROTOCOL_ID … since it is provided through
the routable object.

Note

Using EvalPyFilter offers the possibility to call external webservices, databases … for powerfull
routing or even for logging, rating & billing through external third party systems.

Hint

More examples in the this FAQ’s question: Can you provide an example of how to use EvalPyFilter ?

HTTP Client connector manager

The HTTP Client connector manager module is accessible through the httpccm command and is providing the
following features:

httpccm command line options

	Command

	Description

	-l, –list

	List HTTP client connectors

	-a, –add

	Add a new HTTP client connector

	-r FID, –remove=FID

	Remove HTTP client connector using it’s CID

	-s FID, –show=FID

	Show HTTP client connector using it’s CID

A HTTP Client connector is used in SMS-MO routing, it is called with the message parameters when it is returned
by a matched MO Route (Receiving SMS-MO for more details).

When adding a HTTP Client connector, the following parameters are required:

	cid: Connector id (must be unique)

	url: URL to be called with message parameters

	method: Calling method (GET or POST)

Here’s an example of adding a new HTTP Client connector:

jcli : httpccm -a
Adding a new Httpcc: (ok: save, ko: exit)
> url http://10.10.20.125/receive-sms/mo.php
> method GET
> cid HTTP-01
> ok
Successfully added Httpcc [HttpConnector] with cid:HTTP-01

All the above parameters can be displayed after Connector creation:

jcli : httpccm -s HTTP-01
HttpConnector:
cid = HTTP-01
baseurl = http://10.10.20.125/receive-sms/mo.php
method = GET

Listing Connectors will show currently added Connectors with their CID, Type, Method and Url:

jcli : httpccm -l
#Httpcc id Type Method URL
#HTTP-01 HttpConnector GET http://10.10.20.125/receive-sms/mo.php
Total Httpccs: 1

Stats manager

The Stats manager module is responsible for showing real time statistics, aggregated counters and values such as current bound connections of a User, number of http requests, number of sent messages through a Route, Filter, Connector …

Note

All values are collected during Jasmin’s uptime and they are lost when Jasmin goes off, Stats manager shall be used for monitoring activities but not for advanced business reports.

The Stats manager module is accessible through the stats command and is providing the following features:

stats command line options

	Command

	Description

	–user=UID

	Show user stats using it’s UID

	–users

	Show all users stats

	–smppc=CID

	Show smpp connector stats using it’s CID

	–smppcs

	Show all smpp connectors stats

	–smppsapi

	Show SMPP Server API stats

The Stats manager covers different sections, this includes Users, SMPP Client connectors, Routes (MO and MT), APIs (HTTP and SMPP).

User statistics

The Stats manager exposes an overall view of all existent users as well as a per-user information view:

	stats –users: Will show an overall view of all existent users

	stats –user foo: Will show detailed information for foo

Here’s an example of showing an overall view where users sandra and foo are actually having 2 and 6 SMPP bound connections, user bar is using the HTTP Api only and sandra is using both APIs:

jcli : stats --users
#User id SMPP Bound connections SMPP L.A. HTTP requests counter HTTP L.A.
#sandra 2 2019-06-02 15:35:01 20 2019-06-01 12:12:33
#foo 6 2019-06-02 15:35:10 0 ND
#bar 0 ND 1289 2019-06-02 15:39:12
Total users: 3

The columns shown for each user are explained in the following table:

Columns of the overall statistics for users

	Column

	Description

	SMPP Bound connections

	Number of current bound SMPP connections

	SMPP L.A.

	SMPP Server Last Activity date & time

	HTTP requests counter

	Counter of all http requests done by the user

	HTTP L.A.

	HTTP Api Last Activity date & time

Here’s an example of showing sandra’s detailed statistics:

jcli : stats --user sandra
#Item Type Value
#bind_count SMPP Server 26
#submit_sm_count SMPP Server 1500
#submit_sm_request_count SMPP Server 1506
#unbind_count SMPP Server 24
#data_sm_count SMPP Server 0
#last_activity_at SMPP Server 2019-06-02 15:35:01
#other_submit_error_count SMPP Server 4
#throttling_error_count SMPP Server 2
#bound_connections_count SMPP Server {'bind_transmitter': 1, 'bind_receiver': 1, 'bind_transceiver': 0}
#elink_count SMPP Server 16
#qos_last_submit_sm_at SMPP Server 2019-06-02 12:31:23
#deliver_sm_count SMPP Server 1430
#connects_count HTTP Api 156
#last_activity_at HTTP Api 2019-06-01 12:12:33
#rate_request_count HTTP Api 20
#submit_sm_request_count HTTP Api 102
#qos_last_submit_sm_at HTTP Api 2019-05-22 15:56:02
#balance_request_count HTTP Api 16

This is clearly a more detailed view for user sandra, the following table explains the items shown for sandra:

Details user statistics view items

	Item

	Type

	Description

	last_activity_at

	SMPP Server

	Date & time of last received PDU from user

	bind_count

	SMPP Server

	Binds counter value

	bound_connections_count

	SMPP Server

	Currently bound connections

	submit_sm_request_count

	SMPP Server

	Number of requested SubmitSM (MT messages)

	submit_sm_count

	SMPP Server

	Number of SubmitSM (MT messages) really sent by user

	throttling_error_count

	SMPP Server

	Throttling errors received by user

	other_submit_error_count

	SMPP Server

	Any other error received in response of SubmitSM requests

	elink_count

	SMPP Server

	Number of enquire_link PDUs sent by user

	deliver_sm_count

	SMPP Server

	Number of DeliverSM (MO messages or receipts) received

	data_sm_count

	SMPP Server

	Number of DataSM (MO messages or receipts) received

	qos_last_submit_sm_at

	SMPP Server

	Date & time of last SubmitSM (MT Message) sent

	unbind_count

	SMPP Server

	Unbinds counter value

	qos_last_submit_sm_at

	HTTP Api

	Date & time of last SubmitSM (MT Message sent)

	connects_count

	HTTP Api

	HTTP request counter value

	last_activity_at

	HTTP Api

	Date & time of last HTTP request

	submit_sm_request_count

	HTTP Api

	Number of SubmitSM (MT messages) sent

	rate_request_count

	HTTP Api

	Number of rate requests

	balance_request_count

	HTTP Api

	Number of balance requests

SMPP Client connectors statistics

The Stats manager exposes an overall view of all existent smppc connectors as well as a per-smppc information view:

	stats –smppcs: Will show an overall view of all existent smppc connectors

	stats –smppc foo: Will show detailed information for foo

Here’s an example of showing an overall view where smppc connectors MTN and ORANGE are actives, connector SFONE made no activity at all:

jcli : stats --smppcs
#Connector id Connected at Bound at Disconnected at Submits Delivers QoS errs Other errs
#MTN 6 2019-06-02 15:35:01 2019-06-02 15:35:01 12/10 9/10 2 0
#Orange 1 2019-06-02 15:35:01 2019-06-02 15:35:01 0/0 12022/0 0 0
#SFONE 0 ND ND 0/0 0/0 0 0
Total connectors: 3

The columns shown for each user are explained in the following table:

Columns of the overall statistics for smppcs

	Column

	Description

	Bound count

	Binds counter value

	Connected at

	Last connection date & time

	Bound at

	Last successful bind date & time

	Disconnected at

	Last disconnection date & time

	Submits

	Number of requested SubmitSM PDUs / Sent SubmitSM PDUs

	Delivers

	Number of received DeliverSM PDUs / Number of received DataSM PDUs

	QoS errs

	Number of rejected SubmitSM PDUs due to throttling limitation

	Other errs

	Number of all other rejections of SubmitSM PDUs

Here’s an example of showing MTN’s detailed statistics:

jcli : stats --smppc MTN
#Item Value
#bound_at 2019-06-02 15:35:01
#disconnected_count 2
#other_submit_error_count 0
#submit_sm_count 2300
#created_at 2019-06-01 12:29:42
#bound_count 3
#last_received_elink_at 2019-06-02 15:32:28
#elink_count 34
#throttling_error_count 44
#last_sent_elink_at 2019-06-02 15:34:57
#connected_count 3
#connected_at 2019-06-02 15:35:01
#deliver_sm_count 1302
#data_sm_count 0
#submit_sm_request_count 2344
#last_seqNum 1733
#last_seqNum_at 2019-06-02 15:35:57
#last_sent_pdu_at 2019-06-02 15:35:59
#disconnected_at 2019-06-01 10:18:21
#last_received_pdu_at 2019-06-02 15:36:01
#interceptor_count 0
#interceptor_error_count 0

This is clearly a more detailed view for connector MTN, the following table explains the items shown for MTN:

Details of smppc statistics view items

	Item

	Description

	created_at

	Connector creation date & time

	last_received_pdu_at

	Date & time of last received PDU

	last_sent_pdu_at

	Date & time of last sent PDU

	last_received_elink_at

	Date & time of last received enquire_link PDU

	last_sent_elink_at

	Date & time of last sent enquire_link PDU

	last_seqNum_at

	Date & time of last sequence_number claim

	last_seqNum

	Value of last claimed sequence_number

	connected_at

	Last connection date & time

	bound_at

	Last successful bind date & time

	disconnected_at

	Last disconnection date & time

	connected_count

	Last connection date & time

	bound_count

	Binds counter value

	disconnected_count

	Last disconnection date & time

	submit_sm_request_count

	Number of requested SubmitSM (MT messages)

	submit_sm_count

	Number of SubmitSM (MT messages) really sent (having ESME_ROK response)

	throttling_error_count

	Throttling errors received

	other_submit_error_count

	Any other error received in response of SubmitSM requests

	elink_count

	Number of enquire_link PDUs sent

	deliver_sm_count

	Number of DeliverSM (MO messages or receipts) received

	data_sm_count

	Number of DataSM (MO messages or receipts) received

	interceptor_count

	Number of successfully intercepted messages (MO)

	interceptor_error_count

	Number of failures when intercepting messages (MO)

SMPP Server API statistics

The Stats manager exposes collected statistics in SMPP Server API through the following jCli command:

	stats –smppsapi

Here’s an example of showing the statistics:

jcli : stats --smppsapi
#Item Value
#disconnect_count 2
#bound_rx_count 1
#bound_tx_count 0
#other_submit_error_count 0
#bind_rx_count 0
#bind_trx_count 0
#created_at 2019-06-04 02:22:17
#last_received_elink_at ND
#elink_count 89
#throttling_error_count 1
#submit_sm_count 199
#connected_count 2
#connect_count 16
#bound_trx_count 1
#data_sm_count 2
#submit_sm_request_count 200
#deliver_sm_count 145
#last_sent_pdu_at 2019-06-05 12:12:13
#unbind_count 6
#last_received_pdu_at 2019-06-05 12:16:21
#bind_tx_count 6
#interceptor_count 0
#interceptor_error_count 0

The following table explains the items shown in the above example:

Details of smppsapi statistics view items

	Item

	Description

	created_at

	Connector creation date & time

	last_received_pdu_at

	Date & time of last received PDU

	last_sent_pdu_at

	Date & time of last sent PDU

	last_received_elink_at

	Date & time of last received enquire_link PDU

	connected_count

	Last connection date & time

	connect_count

	TCP Connection request count

	disconnect_count

	Disconnection count

	bind_trx_count

	Transceiver bind request count

	bound_trx_count

	Actually bound transceiver connections count

	bind_rx_count

	Receiver bind request count

	bound_rx_count

	Actually bound receiver connections count

	bind_tx_count

	Transmitter bind request count

	bound_tx_count

	Actually bound transmitter connections count

	submit_sm_request_count

	Number of requested SubmitSM (MT messages)

	submit_sm_count

	Number of SubmitSM (MT messages) accepted (returned a ESME_ROK response)

	deliver_sm_count

	Number of DeliverSM (MO messages or receipts) sent

	data_sm_count

	Number of DataSM (MO messages or receipts) sent

	elink_count

	Number of enquire_link PDUs received

	throttling_error_count

	Throttling errors returned

	other_submit_error_count

	Any other error returned in response of SubmitSM requests

	interceptor_count

	Number of successfully intercepted messages (MT)

	interceptor_error_count

	Number of failures when intercepting messages (MT)

HTTP API statistics

The Stats manager exposes collected statistics in HTTP API through the following jCli command:

	stats –httpapi

Here’s an example of showing the statistics:

jcli : stats --httpapi
#Item Value
#server_error_count 120
#last_request_at ND
#throughput_error_count 4
#success_count 14332
#route_error_count 156
#request_count 20126
#auth_error_count 78
#created_at 2019-06-04 02:22:17
#last_success_at 2019-06-05 18:20:29
#charging_error_count 178
#interceptor_count 0
#interceptor_error_count 0

The following table explains the items shown in the above example:

Details of httpapi statistics view items

	Item

	Description

	created_at

	Connector creation date & time

	last_request_at

	Date & time of last http request

	last_success_at

	Date & time of last successful http request (SMS is accepted for sending)

	request_count

	HTTP request count

	success_count

	Successful HTTP request count (SMS is accepted for sending)

	auth_error_count

	Authentication errors count

	route_error_count

	Route not found errors count

	throughput_error_count

	Throughput exceeded errors count

	charging_error_count

	Charging/Billing errors count

	server_error_count

	Unknown server errors count

	interceptor_count

	Number of successfully intercepted messages (MT)

	interceptor_error_count

	Number of failures when intercepting messages (MT)

Billing

Jasmin [http://jasminsms.com/] comes with a user billing feature that lets you apply rates on message routes, every time a user sends a SMS through a rated route he’ll get charged, once he runs out of credit no more sending will be permitted.

Important

New routes created through MT router manager are not rated by default, you must define the rate of each route in order to enable billing.

Note

Billing is applied on all channels (SMPP Server and HTTP API) the same way, and starting from Jasmin 0.10.13 release, it is possible to disable the billing feature if not used by setting billing_feature=False in jasmin.cfg under http-api and/or smpp-server sections.

Billing quotas

A user can be charged through 2 types of quotas (balance and/or sms_count), if he reaches the limit of one of these quotas no more sending will be permitted, no matter the used channel (SMPP Server or HTTP API).

1. Balance quota

The route rate will be charged on the user balance, let’s get into these use cases for better comprehension:

	When sending one SMS through a route rated 1.2, user’s balance will get decreased by 1.2

	When sending five SMS through a route rated 0.2, user’s balance will get decreased by 1

Important

New users created through User manager will have unlimited balance by default, assuming you’ll apply postpaid billing (or no billing at all), user’s balance must be defined in order to enable billing.

Rate unit

You can see that the rates have no unit or currency, this will offer better flexibility for different business cases, you can consider the rates as:

	Local Jasmin currency and keep a rate for converting to real-life currency.

	Real-life currency

	etc ..

In all cases, Jasmin will never manage the rate unit (or currency), all it does is to ensure users are correctly charged by the rates you define.

Asynchronous billing

As explained later, it is important to know that whatever the used protocol, SMS is always sent asynchronously, this means there’s always an acknowledgment to be received for every sent SMS; Jasmin provides an optional adapted billing algorithm which is able to charge the user asynchronously:

	A defined percentage of the route rate is charged when the user submits the SMS for sending.

	The rest is charged when the SMS is acknowledged by the next relay, in SMPP protocol, this means receiving SUBMIT_SM_RESP PDU, more details here.

Asynchronous billing is automatically enabled when the user have early_decrement_balance_percent defined (undefined by default), let’s get back to examples for better comprehension, assuming user have early_decrement_balance_percent = 25:

	When sending one SMS through a route rated 1.2:

	When sending, user’s balance is decreased by 0.3 (1.2 x 25%)

	When acknowledged, user’s balance is decreased by 0.9 (the rest)

	When sending five SMS through a route rated 0.2:

	When sending, user’s balance is decreased by 0.25 (5 x 0.2 x 25%)

	For each acknowledged SMS, user’s balance is decreased by 0.15

	When all five sent messages are acknowledged, the final charged amount is 0.75 (the rest)

Using asynchronous billing can be helpful in many use cases:

	Charge only when the SMS is acknowledged

	If SMS is not acknowledged for some reason, user can not fill Jasmin’s queues by SMS requests indefinitely, he’ll get out of credits

	etc ..

2. sms_count quota

Simpler than Balance management, sms_count is a counter to be decreased whenever the user submits the SMS for sending, let’s get into these use cases for better comprehension:

	When sending one SMS through a route, user’s sms_count will get decreased by 1

	When sending five SMS through a route, user’s sms_count will get decreased by 5

Note

When defined, sms_count is always decreased no matter the route is rated or not.

Important

New users created through User manager will have unlimited sms_count by default, assuming you’ll apply postpaid billing (or no billing at all), user’s sms_count must be defined in order to enable billing (or limit).

Process flow

The following process flow shows how billing is done through HTTP Api (same process is applied on SMPP Server), it is including all types of billing:

	balance quota billing (ref) including asynchronous billing (ref)

	sms_count quota billing (ref)

[image: Billing process flow]

Billing process flow

Asynchronous billing call flow

When enabled, Asynchronous billing algorithm can charge user every time an acknowledgment is received for each SMS he sent earlier, the following call flow explain the asynchronous billing algorithm:

[image: Asynchronous billing call flow]

Asynchronous billing call flow

In the above figure, user is charged early before submitting SMS to SMSC, and the charged later when the SMSC acknowledge back reception of the message, as detailed earlier, the charged amount in early stage is defined by early_decrement_balance_percent set in user profile.

Note

The route rate is expressed on a per-SUBMIT_SM basis, submitting a long SMS will be splitted into multiple submit_sm SMPP PDUs, each one will be charged on user.

The below figure explain how asynchronous billing is handling long content messages, assuming a user is submitting a message containing 400 characters, which will imply sending 3 submit_sm SMPP PDUs:

[image: Asynchronous billing call flow for long content messages]

Asynchronous billing call flow for long content messages

Asynchronous billing is mainly relying on AMQP broker (like messaging), The AMQP broker is providing a queuing mechanism, through the following illustration you can see how asynchronous billing is done:

[image: Asynchronous billing AMQP message exchange]

Asynchronous billing AMQP message exchange

When receiving a SUBMIT_SM_RESP PDU, submit_sm_resp_event() method is called (more details here), it will check if there’s a remaining bill to charge on user and publish it on bill_request.submit_sm_resp.UID (using billing exchange) where UID is the concerned User ID.

RouterPB’s bill_request_submit_sm_resp_callback() is listening on the same topic and it will be fired whenever it consumes a new bill request, as the Router is holding User objects in memory, it will simply update their balances with the bill amount.

Jasmin is doing everything in-memory for performance reasons, including User charging where the balance must be persisted to disk for later synchronization whenever Jasmin is restarted, this is why RouterPB is automatically persisting Users and Groups to disk every persistence_timer_secs seconds as defined in jasmin.cfg file (INI format, located in /etc/jasmin).

Important

Set persistence_timer_secs to a reasonable value, keep in mind that every disk-access operation will cost you few performance points, and don’t set it too high as you can loose Users balance data updates.

Messaging flows

Messaging is heavily relying on an AMQP broker using topics to queue messages for routing, delivering and acking back.

The AMQP broker is providing a strong store & forward queuing mechanism, through the following illustration you can see how every messaging component is asynchronously connected to the broker.

[image: AMQP Messaging flows]

AMQP Messaging flows

Six main actors are messaging through the “messaging” topic, their business logic are explained in the below paragraphs.

SMPPClientManagerPB

This is a PerspectiveBroker (PB) responsible of managing SMPP Client connectors (list, add, remove, start, stop,
send SMS, etc …), we’ll be only covering the latter (Send SMS).

When the perspective_submit_sm() is called with a SubmitSm PDU and destination connector ID, it will build
an AMQP Content message and publish it to a queue named submit.sm.CID where CID is the destination connector ID.

Note

perspective_submit_sm() is called from HTTP API and SMPP Server API after they check with RouterPB for the right connector to send a SubmitSM to.

Every SMPP Connector have a consumer waiting for these messages, once published as explained above, it will be consumed by
the destination connector’s submit_sm_callback() method (c.f. SMPPClientSMListener).

DLRLookup

This is a consumer on the dlr.* AMQP route, added in v0.9, it’s main role is DLR map fetching from Redis database and publishing the dlr to the right thrower (http or smpp).

RouterPB

This is another PerspectiveBroker (PB) responsible of routing DeliverSm messages, these are received through
the SMPP client connector’s deliver_sm_event_interceptor() method (c.f. SMPPClientSMListener) which
publish to deliver.sm.CID, the RouterPB main role is to decide whether to route DeliverSm messages to:

	deliver_sm_thrower.smpps: if the message is to be delivered through SMPP Server API.

	deliver_sm_thrower.http: if the message is to be delivered through a HTTP connector.

SMPPClientSMListener

Every SMPP Client connector have one attached SMPPClientSMListener instance, it is responsible for handling messages exchanged through the SMPP Client connector using the following event catchers:

deliver_sm_event_interceptor

Every received DeliverSm PDU is published directly to the broker with the following assumptions:

	If it’s a SMS-MO message it will get published as an AMQP Content message to deliver_sm.CID where CID is the source connector ID, this message will be handled by the RouterPB.

	If it’s a delivery receipt and if it were requested when sending the SubmitSm, it will get published as an AMQP Content message to dlr_thrower.http or dlr_thrower.smpps (depends on the used channel for sending initial SubmitSM) for later delivery by DLRThrower’s dlr_throwing_callback() method.

Note

deliver_sm_event_interceptor() will check for interception rules before proceding to routing, c.f.
Interception for more details.

submit_sm_callback

It is a simple consumer of submit.sm.CID where CID is its connector ID, it will send every message received through SMPP connection.

submit_sm_resp_event

It is called for every received SubmitSmResp PDU, will check if the related SubmitSm was requiring a delivery receipt and will publish it (or not) to dlr_thrower.http or dlr_thrower.smpps (depends on the used channel for sending initial SubmitSM).

Note

There’s no actual reason why messages are published to submit.sm.resp.CID, this may change in future.

deliverSmThrower

This is will through any received message from deliver_sm_thrower.http to its final http connector, c.f. Receiving SMS-MO for details and from deliver_sm_thrower.smpps to its final SMPP Server binding.

DLRThrower

This is will through any received delivery receipt from dlr_thrower.http to its final http connector, c.f. Receiving DLR for details and from dlr_thrower.smpps to its final SMPP Server binding.

User FAQ

Could not find a version that satisfies the requirement jasmin

Installing Jasmin using pip will through this error:

$ sudo pip install python-jasmin
[sudo] password for richard:
Downloading/unpacking jasmin
 Could not find a version that satisfies the requirement jasmin (from versions: 0.6b1, 0.6b10, 0.6b11, 0.6b12, 0.6b13, 0.6b14, 0.6b2, 0.6b3, 0.6b4, 0.6b5, 0.6b6, 0.6b7, 0.6b8, 0.6b9)
Cleaning up...
No distributions matching the version for jasmin
Storing debug log for failure in /home/richard/.pip/pip.log

This is common question, since Jasmin is still tagged as a ‘Beta’ version, pip installation must be done with the –pre parameter:

$ sudo pip install --pre python-jasmin
...

Hint

This is clearly documented in Installation installation steps.

Cannot connect to telnet console after starting Jasmin

According to the installation guide, Jasmin requires running RabbitMQ and Redis servers, when starting it will wait for these servers to go up.

If you already have these requirements, please check jcli and redis-client logs:

	/var/log/jasmin/redis-client.log

	/var/log/jasmin/jcli.log

Hint

Please check Prerequisites & Dependencies before installing.

Should i expose my SMPP Server & HTTP API to the public internet for remote users ?

As a security best practice, place Jasmin instance(s) behind a firewall and apply whitelisting rules to only accept users you already know, a better solution is to get VPN tunnels with your users.

If for some reasons you cannot consider these practices, here’s a simple iptables configuration that can help to prevent Denial-of-service attacks:

iptables -I INPUT -p tcp --dport 2775 -m state --state NEW -m recent --set --name SMPP_CONNECT
iptables -N RULE_SMPP
iptables -I INPUT -p tcp --dport 2775 -m state --state NEW -m recent --update --seconds 60 --hitcount 3 --name SMPP_CONNECT -j RULE_SMPP
iptables -A RULE_SMPP -j LOG --log-prefix 'DROPPED SMPP CONNECT ' --log-level 7
iptables -A RULE_SMPP -j DROP

This will drop any SMPP Connection request coming from the same source IP with more than 3 times per minute …

Does Jasmin persist its configuration to disk ?

Since everything in Jasmin runs fully in-memory, what will happen if i restart Jasmin or if it crashes for some reason ? how can i ensure my configuration (Connectors, Users, Routes, Filters …) will be reloaded with the same state they were in before Jasmin goes off ?

Jasmin is doing everything in-memory for performance reasons, and is automatically persisting newly updated configurations every persistence_timer_secs seconds as defined in jasmin.cfg file.

Important

Set persistence_timer_secs to a reasonable value, keep in mind that every disk-access operation will cost you few performance points, and don’t set it too high as you can loose critical updates such as User balance updates.

When receiving a DLR: Got a DLR for an unknown message id

The following error may appear in messages.log while receiving a receipt (DLR):

WARNING 4403 Got a DLR for an unknown message id: 788821

This issue can be caused by one of these:

	The receipt is received and it indicates a message id that did not get sent by Jasmin,

	The receipt is received for a message sent by Jasmin, but message id is not recognize, if it’s the case then find below what you can do.

What’s happening:

When sending a message (submit_sm) the upstream connector will reply back with a first receipt (submit_sm_resp) where it indicates the message id for further tracking, then it will send back another receipt (deliver_sm or data_sm) with the same message it and different delivery state.
The problem occurs when the upstream connector returns the same message id but in different encodings.

Solution:

Use the dlr_msgid parameter as shown in SMPP Client connector manager to indicate the encoding strategy of the upstream partner/connector.

How to hide message content in log files for privacy reasons ?

Starting from v0.9.28 it is possible to hide the message content in log files, this is done by tweaking the log_privacy parameter in the SMPP Client connector manager and log_privacy in jasmin.cfg and dlrlookupd.cfg.

Developer FAQ

How to ‘log’ messages in a third party database ?

Jasmin runs without a database, everything is in-memory and messages are exchanged through AMQP broker (RabbitMQ), if you need to get these messages you have to consume from the right queues as described in Messaging flows.

Here’s an example:

Thanks to Pedro [https://github.com/pguillem]’s contribution:

Here is the PySQLPool mod to @farirat ´s gist
https://gist.github.com/pguillem/5750e8db352f001138f2

Here is the code to launch the consumer as a system Daemon in Debian/Ubuntu
https://gist.github.com/pguillem/19693defb3feb0c02fe7

1) create jasmind_consumer file in /etc/init.d/
2) chmod a+x
3) Modify the path and script name of your consumer in jasmind_consumer
4) Remember to exec "update-rc.d jasmind_consumer defaults" in order to start at boot

Cheers
Pedro

More on this:

Gist from https://gist.github.com/farirat/5701d71bf6e404d17cb4
import cPickle as pickle
from twisted.internet.defer import inlineCallbacks
from twisted.internet import reactor
from twisted.internet.protocol import ClientCreator
from twisted.python import log

from txamqp.protocol import AMQClient
from txamqp.client import TwistedDelegate

import txamqp.spec

@inlineCallbacks
def gotConnection(conn, username, password):
 print("Connected to broker.")
 yield conn.authenticate(username, password)

 print("Authenticated. Ready to receive messages")
 chan = yield conn.channel(1)
 yield chan.channel_open()

 yield chan.queue_declare(queue="someQueueName")

 # Bind to submit.sm.* and submit.sm.resp.* routes
 yield chan.queue_bind(queue="someQueueName", exchange="messaging", routing_key='submit.sm.*')
 yield chan.queue_bind(queue="someQueueName", exchange="messaging", routing_key='submit.sm.resp.*')

 yield chan.basic_consume(queue='someQueueName', no_ack=True, consumer_tag="someTag")
 queue = yield conn.queue("someTag")

 # Wait for messages
 # This can be done through a callback ...
 while True:
 msg = yield queue.get()
 props = msg.content.properties
 pdu = pickle.loads(msg.content.body)

 	if msg.routing_key[:15] == 'submit.sm.resp.':
 		print('SubmitSMResp: status: %s, msgid: %s' % (pdu.status,)
 			props['message-id'])
 elif msg.routing_key[:10] == 'submit.sm.':
 	print('SubmitSM: from %s to %s, content: %s, msgid: %s' % (pdu.params['source_addr'],)
 		pdu.params['destination_addr'],
 		pdu.params['short_message'],
 		props['message-id'])
 	else:
 		print('unknown route')

 # A clean way to tear down and stop
 yield chan.basic_cancel("someTag")
 yield chan.channel_close()
 chan0 = yield conn.channel(0)
 yield chan0.connection_close()

 reactor.stop()

if __name__ == "__main__":
 """
 This example will connect to RabbitMQ broker and consume from two route keys:
 - submit.sm.*: All messages sent through SMPP Connectors
 - submit.sm.resp.*: More relevant than SubmitSM because it contains the sending status

 Note:
 - Messages consumed from submit.sm.resp.* are not verbose enough, they contain only message-id and status
 - Message content can be obtained from submit.sm.*, the message-id will be the same when consuming from submit.sm.resp.*,
 it is used for mapping.
 - Billing information is contained in messages consumed from submit.sm.*
 - This is a proof of concept, saying anyone can consume from any topic in Jasmin's exchange hack a
 third party business, more information here: http://docs.jasminsms.com/en/latest/messaging/index.html
 """

 host = '127.0.0.1'
 port = 5672
 vhost = '/'
 username = 'guest'
 password = 'guest'
 spec_file = '/etc/jasmin/resource/amqp0-9-1.xml'

 spec = txamqp.spec.load(spec_file)

 # Connect and authenticate
 d = ClientCreator(reactor,
 	AMQClient,
 	delegate=TwistedDelegate(),
 	vhost=vhost,
 spec=spec).connectTCP(host, port)
 d.addCallback(gotConnection, username, password)

 def whoops(err):
 if reactor.running:
 log.err(err)
 reactor.stop()

 d.addErrback(whoops)

 reactor.run()

How to directly access the Perspective Broker API ?

Management tasks can be done directly when accessing PerspectiveBroker [http://twistedmatrix.com/documents/current/core/howto/pb-intro.html] API, it will be possible to:

	Manage SMPP Client connectors,

	Check status of all connectors,

	Send SMS,

	Manage Users & Groups,

	Manage Routes (MO / MT),

	Access statistics,

	…

Here’s an example:

Gist from https://gist.github.com/farirat/922e1cb2c4782660c257
"""
An example of scenario with the following actions:
 1. Add and start a SMPP Client connector
 2. Provision a DefaultRoute to that connector
 3. Provision a User

This is a demonstration of using PB (PerspectiveBroker) API to gain control Jasmin.

The jasmin SMS gateway shall be already running and having
a pb listening on 8989.
"""

import pickle as pickle
from twisted.internet import reactor, defer
from jasmin.managers.proxies import SMPPClientManagerPBProxy
from jasmin.routing.proxies import RouterPBProxy
from jasmin.routing.Routes import DefaultRoute
from jasmin.routing.jasminApi import User, Group
from jasmin.protocols.smpp.configs import SMPPClientConfig
from jasmin.protocols.cli.smppccm import JCliSMPPClientConfig as SmppClientConnector
from twisted.web.client import getPage

@defer.inlineCallbacks
def runScenario():
 try:
 ## First part, SMPP Client connector management
 ###
 # Connect to SMPP Client management PB proxy
 proxy_smpp = SMPPClientManagerPBProxy()
 yield proxy_smpp.connect('127.0.0.1', 8989, 'cmadmin', 'cmpwd')

 # Provision SMPPClientManagerPBProxy with a connector and start it
 connector1 = {'id':'abc', 'username':'smppclient1', 'reconnectOnConnectionFailure':True}
 config1 = SMPPClientConfig(**connector1)
 yield proxy_smpp.add(config1)
 yield proxy_smpp.start('abc')

 ## Second part, User and Routing management
 ###
 # Connect to Router PB proxy
 proxy_router = RouterPBProxy()
 yield proxy_router.connect('127.0.0.1', 8988, 'radmin', 'rpwd')

 # Provision RouterPBProxy with MT routes
 yield proxy_router.mtroute_add(DefaultRoute(SmppClientConnector('abc')), 0)
 routes = yield proxy_router.mtroute_get_all()
 print("Configured routes: \n\t%s" % pickle.loads(routes))

 # Provisiong router with users
 g1 = Group(1)
 u1 = User(uid = 1, group = g1, username = 'foo', password = 'bar')
 yield proxy_router.group_add(g1)
 yield proxy_router.user_add(u1)
 users = yield proxy_router.user_get_all()
 print("Users: \n\t%s" % pickle.loads(users))

 ## Last, tear down
 ##################
 # Stop connector
 yield proxy_smpp.stop('abc')
 except Exception as e:
 print("ERROR RUNNING SCENARIO: %s" % str(e))
 finally:
 reactor.stop()

runScenario()
reactor.run()

Can you provide an example of how to use EvalPyFilter ?

Let’s say you need your filter to pass only messages from username foo:

if routable.user.username == 'foo':
 result = False
else:
 result = True

Note

Although UserFilter is already there to provide this feature, this is just a simple example of using EvalPyFilter.

So your python script will have a routable global variable, it is an instance of RoutableDeliverSm if you’re playing with a MO Route and it will be an instance of RoutableSubmitSm if you’re considering it with a MT Route.

In order to implement your specific filter, you have to know all the attributes these objects are providing,

Now let’s make an advanced example, the below filter will:

	Connect to a database

	Check if the message destination_address is in blacklisted_numbers table

	Pass only if the destination_address is not blacklisted

"""This is an example of using EvalPyFilter with a database interrogation, it is written
for demonstration purpose only.
"""
import MySQLdb as mdb

destination_addr = routable.pdu.params['destination_addr']

try:
	con = mdb.connect('localhost', 'jasmin', 'somepassword', 'jasmin_faq');

	cur = con.cursor()
	cur.execute("SELECT COUNT(msisdn) FROM blacklisted_numbers WHERE msisdn = %s" % destination_addr)
	count = cur.fetchone()
	
	if count[0] == 0:
		# It is not blacklisted, filter will pass
		result = True
except mdb.Error as e:
	# A DB error, filter will block
	# Error can be logged as well ...
	result = False
finally:
	# Filter will block for any other exception / reason
	result = False

How to log events inside an EvalPyFilter ?

It is a usual method to get the filter logging directly to the Router’s log file (default is router.log), here’s a very simple example of doing it:

import logging

log = logging.getLogger("jasmin-router")

log.debug('Inside evalpy-test.py')
if routable.user.username == 'Evalpyusr2':
 log.info("Routable's username is Evalpyusr2 !")
 result = False
else:
 log.info("Routable's username is not Evalpyusr2: %s" % routable.user.username)
 result = True

Note

More on python logging: here [https://docs.python.org/2/howto/logging-cookbook.html].

How to set an EvalPyFilter for a MT Route ?

I have written my EvalPyFilter, how can i use it to filter MT messages ?

Using jCli:

First, create your filter:

jcli : filter -a
Adding a new Filter: (ok: save, ko: exit)
> type evalpyfilter
> pyCode /some/path/advanced_evalpyfilter.py
> fid blacklist_check
> ok
Successfully added Filter [EvalPyFilter] with fid:blacklist_check

Second, create a MT Route:

jcli : mtrouter -a
Adding a new MT Route: (ok: save, ko: exit)
> type StaticMTRoute
jasmin.routing.Routes.StaticMTRoute arguments:
filters, connector, rate
> filters blacklist_check
> connector smppc(SOME-SMSC)
> rate 0.0
> order 10
> ok
Successfully added MTRoute [StaticMTRoute] with order:10

And you’re done ! test your filter by sending a SMS through Jasmin’s APIs.

PDU params keep resetting to connector defaults even after interception ?

When sending MT messages through httpapi, some pdu parameters will be reset
to connector defaults even if they were manually updated inside an interceptor
script, how can Jasmin avoid updatingmy pdu params ?

After updating a pdu parameter, it must be locked so Jasmin will not re-update
it again, here’s an example:

Set pdu param:
routable.pdu.params['sm_default_msg_id'] = 10
Lock it:
routable.lockPduParam('sm_default_msg_id')

Note

Locking pdu parameters is only needed when message is pushed from httpapi.

Index

 _images/hld.png
Jasmin SMS Gateway v0.10
MO/MT SMS & Bulks

SEVEl Receipt | Third pa
SMPP clien

i

M S

‘, Third pal HTTP

Applicatio client

Receipt

d o PB
hied naeti, | Management server
Third pa
Applicatiol
PP PB
server

SMPP serve
Telnet

RC D Management server
3
AMQP Redis

client client

AMQP Broker Redis

_images/jcli-architecture.png
_Perspective brokers

[

user §lgroup

_images/billing.png
| @ Publsher @ Exchange
| @ Consumer O queve

balance

Bill request submit sm_resp_callback

bilrequest.submit_sm_resp.*
[RouterPB_bil request_subrmit_sm_resp_al - "

bil_request submit_sm_resp.UID

——
Submit sm_resp_event

_images/dlr-flowchart.png
Throw DLR to Delay for
hitp connector < Tetry_delay seconds

v hre

Retries. No
— <=
max_retries

Status = 200
?

v

ACK/jasmin
?

_images/sms-mo-flowchart.png
Throw SMS-MO to_
hitp connector

v

Status
?

v

ACK/jasmin
?

200

-~

Delay for
Tetry_delay seconds

[

Retries.
<=
max_retries

—

_images/messaging.png
@ Consumer [Queue
@ Pub.&consumer L

,,,,,,,,,,,,,,,,,,,,,, —

perspective_submit_sm

(
: @ Publisher @ Exchange
i
i
i

deliver_sm_callback

—

\ deliver_sm_throwing_callback
RouterPB_deliver_sm_all

deliver_sm_thrower.http

deliver_sm_thrower.smpps A
= PP deliver_sm_thrower.smpps

dlr_thrower.smpps

exchange: dir_thrower.http
messaging

type=topic

C o Q - dir_throwing_callback
DLRLookup-<main> 2 4

dir_thrower.smpps

dlIr_thrower.http

l submit_sm_resp_event submit_sm_callback er_sm_event_interceptor

_images/routing-process.png
Get.
MORoutingTabl

Get.

MO MT
le < MO Or MTZ =y rpoutingTable

Test possed bassedTest
ivers ivers
¥ Folled ¥ Folled
stast stast

o~ route? oot

_static/file.png

_images/async-callflow-long-content.png
Send SMS (400 chars)
Select MTRoute

Return route

HTTP Session
Charge User x3

Success HTTP200

SMPPfsubmit_sm_resp PDU

SMPPfsubmit_sm_resp PDU

SMPPlsubmit_§m_resp PDU

-"‘“"“‘

_images/async-callflow.png
Send SMS

Select MTRoute

Return route

HTTP Session

Charge User

Success HTTP200

SMPPfsubmit_sm_resp PDU

of the bil

_images/Route.png
Route DefaultRoute

[+type = default
[FnatchFilters (routable)

“type = generick
+filters: list
+connector

irate: float <

+_init_(filters,comnector, rate)

+getConnector () RoundrobinRoute
+matchFilters(routable)
getRate() () “type = generick

+filters: list
+connectors
+_init_(filters,connectors)

+getConnector ()

+_init_(filters,connector, rate=0.08)

RandomRoundrobinMORoute RandomRoundrobinMTRoute

[F_init_(filters:list,connectors,rate)

_images/RoutingTable.png
RoutingTable
[“type = generick
“add(route, order)
+remove (order)
+getALl()
+flush ()
+getRouteFor (routable)

MTRoutingTable

[Ftype = i

MORoutingTable
[+type = M0

_images/billing-process.png
1. Balance quota billing

Bill = route rate
L

User's earl

User's balafice

| lance
-

decrement_balance_percent
set?

oy

Bill = route rate *
early_decrement_balance_percent %

Charge Bl to

User's balance

v/
Queue second
bl for later acknowledgement

!

—] s flow
1 Ven/latestirouting/index bt

_static/jasmin-logo-60x60.png
Jasmin

nav.xhtml

 Table of Contents

 		
 The Jasmin Open source SMS gateway

 		
 Architecture overview

 		
 Support

 		
 Getting Help

 		
 Commercial Support

 		
 Installation

 		
 Prerequisites & Dependencies

 		
 Ubuntu

 		
 RHEL & CentOS

 		
 Pypi

 		
 System user

 		
 System folders

 		
 Installation

 		
 Docker

 		
 Installing Docker

 		
 Using docker-compose

 		
 Monitoring using Grafana

 		
 Kubernetes cluster

 		
 Simple k8s architecture

 		
 Sending your first SMS

 		
 1. Adding SMPP connection

 		
 2. Starting the connector

 		
 3. Configure simple route

 		
 4. Create a user

 		
 5. Send SMS

 		
 RESTful API

 		
 Installation

 		
 Services

 		
 Authentication

 		
 Send a single message

 		
 Send multiple messages

 		
 Send binary messages

 		
 Usage examples:

 		
 About callbacks:

 		
 About batch scheduling:

 		
 Balance check

 		
 Route check

 		
 Ping

 		
 HTTP API

 		
 Features

 		
 Sending SMS-MT

 		
 HTTP request parameters

 		
 HTTP response

 		
 Examples

 		
 jasmin.cfg / http-api

 		
 Receiving DLR

 		
 HTTP Parameters for a level 1 DLR

 		
 HTTP Parameters for a level 2 or 3 DLR

 		
 Processing

 		
 jasmin.cfg / dlr-thrower

 		
 Receiving SMS-MO

 		
 HTTP Parameters

 		
 Processing

 		
 jasmin.cfg / deliversm-thrower

 		
 Monitoring metrics

 		
 HTTP response

 		
 Checking account balance

 		
 HTTP request parameters

 		
 HTTP response

 		
 Examples

 		
 Checking rate price

 		
 HTTP request parameters

 		
 HTTP response

 		
 Examples

 		
 SMPP Server API

 		
 Features

 		
 jasmin.cfg / smpp-server

 		
 Binding to SMPP Server

 		
 Supported SMPP PDUs

 		
 The message router

 		
 Process flow

 		
 Examples

 		
 Router components

 		
 Routable

 		
 Connector

 		
 Filter

 		
 Route

 		
 RoutingTable

 		
 Interception

 		
 Enabling interceptor

 		
 Intercepting a message

 		
 Controlling response

 		
 Scripting examples

 		
 HLR Lookup routing

 		
 MO Charging

 		
 Overriding source address

 		
 Chaning TON or NPI

 		
 Activate logging

 		
 Enforcing DLR

 		
 Programming examples

 		
 Sending SMS

 		
 Receiving SMS

 		
 Routing

 		
 Management CLI overview

 		
 Architecture

 		
 Configuration

 		
 First connection & authentication

 		
 Available commands:

 		
 Interactivity:

 		
 Profiles and persistence

 		
 Persist

 		
 Load

 		
 Management CLI Modules

 		
 User manager

 		
 User credentials

 		
 Group manager

 		
 MO router manager

 		
 MT router manager

 		
 MO interceptor manager

 		
 MT interceptor manager

 		
 SMPP Client connector manager

 		
 Filter manager

 		
 External business logic

 		
 HTTP Client connector manager

 		
 Stats manager

 		
 User statistics

 		
 SMPP Client connectors statistics

 		
 SMPP Server API statistics

 		
 HTTP API statistics

 		
 Billing

 		
 Billing quotas

 		
 1. Balance quota

 		
 2. sms_count quota

 		
 Process flow

 		
 Asynchronous billing call flow

 		
 Messaging flows

 		
 SMPPClientManagerPB

 		
 DLRLookup

 		
 RouterPB

 		
 SMPPClientSMListener

 		
 deliver_sm_event_interceptor

 		
 submit_sm_callback

 		
 submit_sm_resp_event

 		
 deliverSmThrower

 		
 DLRThrower

 		
 User FAQ

 		
 Could not find a version that satisfies the requirement jasmin

 		
 Cannot connect to telnet console after starting Jasmin

 		
 Should i expose my SMPP Server & HTTP API to the public internet for remote users ?

 		
 Does Jasmin persist its configuration to disk ?

 		
 When receiving a DLR: Got a DLR for an unknown message id

 		
 How to hide message content in log files for privacy reasons ?

 		
 Developer FAQ

 		
 How to â��logâ�� messages in a third party database ?

 		
 How to directly access the Perspective Broker API ?

 		
 Can you provide an example of how to use EvalPyFilter ?

 		
 How to log events inside an EvalPyFilter ?

 		
 How to set an EvalPyFilter for a MT Route ?

 		
 PDU params keep resetting to connector defaults even after interception ?

_images/Filter.png
DatelntervalFilter TimelntervalFilter DestinationAddrFilter

y

TansparentFilte} Iter ShortMessageFilter
+forRoutes = ['mo’, 'mt']
[>]+_init_(connector,user,group,source_addrf<}—
destination_addr, short_message,
ConnectorFilter dateInterval, timeInterval)
e = ol tnatch(routable) SourceAddrFilter
lr Firmmes = T

UserFilter GroupFilter EvalP yFilter|
[+forRoutes = ['mt '] [+forRoutes = ['mt ']

_static/jasmin-logo.png
%asmin Gateway

_images/Routable.png
Routable

[+addTag(tagrint)

[+hasTag (tag:int) [<}— SimpleRoutablePDU
+getTags (): list
[+removeTag(tag:int) [+PoU
|+flushTags) ruser
+date_time
lﬁ i~ it (comestor POl er dete s
RoutableSubmitSm RoutableDeliverSm

+POU +POU

+user +connector

+date_time +date_time

[F init_ (PDU,user,date time) |r__init_(PDU,connector,date_time

_static/jasmin-logo-small.png
?asmin Gateway

_images/Connector.png
HttpConnector

JasminApiObject
“type - nttp
+baseurt
smethod
[+_init_(cid,baseurl,method=GET]
Connector
type - generic
cid <t
+_init_(cid)

repr_
s str.

SmppClientConnector
[+type = smppc

_static/jasmin-logo-white.png
?asmin Gateway

_static/plus.png

_static/jasmin-small.png
& Jasmin

_static/minus.png

